arXiv:1804.10610v1 [gr-gc] 27 Apr 2018

A Survey of Black Hole Thermodynamics

Aron C. Wall*
Stanford Institute for Theoretical Physics
382 Via Pueblo, Stanford University, Stanford, CA, 94305

April 30, 2018

Abstract

This is an introductory, up-to-date review of the essentials of black hole
thermodynamics. The main topics surveyed are: (i) the four laws of thermo-
dynamics as applied to a black hole horizon, and the current status of their
proofs; (ii) different definitions of horizons, and their unique properties; (iii)
the nature of black hole entropy, its quantum and stringy corrections, and ul-
timate origin from quantum gravity microstates; (iv) the focusing law for the
area/entropy; and finally (v) the holographic principle, and how we can use it
to learn about the information inside black holes.
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1 Introduction

Black holes are peculiar entities, but in one respect they are strangely normal: they
obey laws of thermodynamics similar to ordinary matter systems [1], when viewed
from the perspective of an observer outside the horizon, so long as we attribute to
the horizon an entropy S proportional to its area A, a temperature T' proportional
to its surface gravity x, and of course an energy F proportional to its mass M.
This came as a surprise for several reasons. First, the region outside the horizon
is seemingly an open system (since matter can fall in), whereas the second law of
thermodynamics normally applies only to closed systems. Second, at the classical
level stationary black holes have only a few degrees of freedom (e.g. mass and charge)
and so it is mysterious what statistical mechanical states are counted by this entropy.
Recently a great deal of progress has been made in understanding the precise way
in which black hole thermodynamics should be interpreted, especially in dynamical
situations where matter may be falling across the horizon. Some of these insights



have come from a better understanding of classical general relativity (GR), and also
how quantum field theory (QFT) works on a black hole background. Even more
have come from the holographic principle, the idea that the degrees of freedom in a
gravitational system are somehow encoded in the spatial boundary of the system.

For simplicity this review is centered around black holes, but it should be re-
membered that most of the results can be generalized to other contexts, e.g. to
cosmological horizons, or to noncompact surfaces in asymptotically flat or anti-de
Sitter (AdS) spacetimes. An excellent older review is Jacobson [2], but below we will
describe several more recent developments, especially for non-stationary horizons.

In Section 2, we briefly introduce some energy conditions that will be repeatedly
used in the proofs of theorems about black holes. Section [3| describes the nature of
thermal equilibrium for black holes. Section 4] introduces the first law of black hole
thermodynamics, which allows the comparison of nearby equilibrium solutions. In
Section , we discuss the black hole entropy and its corrections in quantum and/or
stringy situations. Section [0 describes dynamical black holes, different definitions of
horizons, and the second law in various regimes. A key concept is the focusing of
entropy along lightlike hypersurfaces. Finally in Section [7] we discuss the holographic
principle and what it teaches us about black holes in quantum gravity.

2 Energy Conditions

When proving theorems about general relativity, it is often necessary to assume some
positivity conditions on the stress-energy tensor Tp,{]] otherwise all possible metrics
are possible solutions to the Einstein equations:

1
Rab — §gabR = 87TG Tab- (1)

The following energy conditions tend to be obeyed by most reasonable classical fields:
Null Energy Condition (NEC): T, 79" > 0 for all null (lightlike) vectors 7.

Dominant Energy Condition (DEC): T, %5 > 0 for all timelike vectors £y, £,.

Yet both of these energy conditions can be violated by quantum fields |3], and also
by classical fields that are non-minimally coupled to curvature [4]E] However, in
QFT, the integral of the null energy is still positive on any infinitely-extended null

ISome proofs reviewed below contain additional technical assumptions; see the references for
details.

2This is a vee (v), not a nu (v). The default LaTeX italicized v looks too much like a w.

3The black hole entropy receives corrections in these cases, as will be discussed in section



geodesic ; this is known as the Averaged Null Energy Condition (ANEC):El

/ T ¥ dv >0, (2)

—0o0

where v is an uniform (i.e. affine) coordinate labelling the null direction, and v* is
the corresponding unit vectorEl In a gravitational theory, the ANEC can be used to
rule out warp drives and other causality violations .

3 Thermal Equilibrium

In this section we describe thermal equilibrium for classical and quantum black holes.

3.1 Killing Horizons

Figure 1: Penrose diagram of the Schwarzschild black hole, an example of a Killing horizon.
Each point represents a sphere, light travels at 45°, solid boundary edges are infinity, and
jagged edges are singularities. The future horizon H™, past horizon H~, bifurcation surface
B, and the action of the Killing vector x* are shown. (In the case of a black hole that forms
from collapse and later becomes stationary, only the right and upper quadrants exist.)

The event horizon of a black hole in D spacetime dimensions is a (D — 1)-
dimensional surface, composed of the null geodesics which just barely fail to escape
from the black hole. When the spacetime has a symmetry that maps the horizon into
itself along the null direction, we call it a Killing horizon. In an eternal (maximally

4For QFT in curved spacetime, the ANEC holds if the null geodesic is achronal, i.e. having no
timelike separated points [6,[7].

SFor a long time the ANEC was only known to hold in special cases (like free field theory), but
it has recently been proven for general quantum field theories Igl
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extended, non-extremal) black hole spacetime, the Killing horizon consists of a future
horizon HT, a past horizon H~, and a (D-2)-dimensional bifurcation surface B where
the two intersect. See Fig. [I}

In black hole thermodynamics, the temperature 7" of a Killing horizon is identified
with the surface gravity & evaluated on H*:

7o = Va0l = - S (Tars) (T, ®)

where x® is the Killing vectmﬂ whose flow generates the time translation symmetry,
normalized to be a unit vector at spatial inﬁnityﬂ If x* is also time-reversal invariant,
we say that the Killing horizon is static. At the bifurcation surface B, x* looks locally
like a Lorentz boost.

The zeroth law of classical black hole thermodynamics states that this surface
gravity is constant everywhere on H*. This law can be proven for any Killing horizon
which is either i) static or ii) axisymmetric with a t — —t, ¢ — —¢ reflection
symmetry of the time and angular coordinates [11,/12]. There is a more general proof
which holds whenever the horizon is stationary (regardless of whether the spacetime
outside the horizon admits a Killing symmetry), but it uses the DECH

3.2 Hartle-Hawking State

At the quantum level, black holes radiate Hawking quanta [14]. These quanta emerge
from the short-distance modes near the horizon, which are red-shifted as they escape
from the horizon to infinity.

A static Killing horizon admits a special Hartle-Hawking (HH) state, where the
quantum fields are in thermal equilibrium with the black hole with a temperature T' =
hr/ 27TE| This state can be obtained by Wick rotating the black hole geometry, and
then doing a path integral on the resulting FEuclidean signature geometry [15/16]. The
thermality of the state pypy outside of the bifurcation surface B is then guaranteed
by the periodicity of the geometry in the direction of imaginary Killing time.ﬂ That
is,

PHH X eiK/T7 (4)
where K is proportional to the Killing energy:
K= / Ty x* dX°, (5)
by

6A Killing vector satisfies the equation V,xp, + Vyxa = 0, which implies that it generates a
symmetry of the metric.

"Thus, upon rescaling the size of a black hole, T~ 1/R where R is its radius.

8t is not clear how to extend this result beyond Einstein gravity, cf. [13] for a negative result in
Lovelock gravity.

9Here and below, we set the speed of light ¢ and Boltzman’s constant kg to 1.

10This statement assumes exact Lorentz invariance, without which the laws of black hole thermo-
dynamics can be violated [17H19).



Y is any partial time slice connecting B to spatial infinity, d¥ is the natural volume
measure for fluxes across X, and x“ is the static Killing vector.

While the HH-state is thermal from the perspective of an observer restricted to
the region outside the bifurcation surface, it is actually the ground state with respect
to translations v — v + ¢ of a uniform null coordinate along H* . This
actually implies that in the HH-state, the ANEC integral is exactly zero on each
individual lightray + of the horizon—the LHS of is just the energy associated
with the null translation symmetry along 7E|

Figure 2: The lightrays generating the future Killing horizon H™ are shown (vertical lines)
with (v, y) coordinates. pgp is a ground state with respect to translation along any lightray
7, but is thermal with respect to a “boost” in the (shaded) region above any cut v.(y).

We can now ask what happens if we cut the horizon at an arbitrary cut v = v,(y),
where y is the (D —2) transverse coordinates labelling different lightrays (Fig. [2). In
the region outside any such cut, it can be shown that pg g is thermal with respect to
an integral of the stress tensor on Ht above the cut v.(y), plus a piece K, associated
with energy that goes off to future infinity without ever crossing the horizon:

K(v,) =2n / T X*d2 + Ki. (6)

>v.(y) on H+

This is a symmetry of the horizon H™, but not the rest of the spacetime. It is therefore not
associated with a globally conserved quantity.



Here X = (v — vi(y))v* (v* being the unit v-vector) is the vector generating an
approximate near-horizon symmetry that looks like a Lorentz boost around v, (y)—it
is a linear combination of the boost Killing vector x* = vv* and the null translation
symmetries of H* mentioned in the previous paragraph, which take the form f(y)v®.
The natural null integration measure on HT is just dX” = v dvdA. Note that (0]
reduces to ([5)) when the cut v.(y) is chosen to be the bifurcation surface B[

4 First Law and Canonical Energy

The first law of black hole mechanics (really the Clausius relation) governs first order
variations to thermal equilibrium states. In the case of a black hole of mass M, charge
) and angular momentum J, it takes the form

dM =T dS + QdJ + ®dQ, (7)

where (2 is the angular velocity of light rays on the horizon, ® is the electric potential
on the horizon, and 7" and S are proportional to the surface gravity x and area A
respectively. But by adopting a co-rotating frame of reference and a gauge where
® = 0, we will convert to the simpler form dM = T dS; this is convenient for
analyzing the effects of matter fluxes in the near-horizon limit. It has been proved that
the first law holds both for nearby stationary solutions (the stationary comparison
first law) [1], and, more interestingly, for matter fields dynamically falling across the
horizon (the physical process first law) assuming that the black hole begins and ends
in a stationary configuration [26,27].

The first law may be proven most elegantly using Noetherian methods [27-30].
Diffeomorphism invariance implies that the canonical energy £ associated with the
black hole’s Killing vector x, is always a total derivative, hence it can be written as a
boundary integral. The boundary value at infinity is related to the gravitational mass,
but the boundary value at the horizon is the entropy S. This allows us to interpret
the physical-process first law as a kind of gravitational “Gauss law” relating AS to
the flux of £ across the horizon. Moreover this framework can be generalized to
arbitrary theories of gravity, and one finds that for Killing horizons S is given by the
Wald entropy (the first term of in Section .

Evaluating the canonical energy £ at second order provides a useful diagnostic
criterion for the stability of classical black holes [31]. At this order it also shows the
impossibility [32] of overspinning or overcharging a black hole beyond extremality

12Eq. (6)) was derived in [23] if the QFT is free or superrenormalizable, and more recently by [24]
for all field theories flowing to a conformal fixed point in the ultraviolet. (Technically [24] only
considered the case of Rindler horizons in Minkoswki, where all information falls across the horizon
and hence there is no constant term K., but I expect their results can be generalized to the black
hole case. Their work also implies a novel entanglement entropy proof of the a-theorem in D = 4
dimensions [25].)



(the maximum allowed @) and/or J value for a given M )—even in situations where
a first-order analysis seems to indicate that this is possible [33]34]—once self-force
effects are taken into consideration [35-37]. This vindicates the third law of black
holes, which states that there is no physically allowed way to create an extremal black
hole by any finite process |1, 38]]1__3]

5 Black Hole Entropy

The entropy of a black hole may be calculated classically by consistency with the
first law (Sec. [4]) or second law (Sec. [6). It can also be calculated by path integral
methods [39,40]. In this section we give the formula for black hole entropy in the
classical regime, and then describe its quantum/stringy corrections, and its invariance
under renormalization. At the end we briefly discuss the corresponding microstate
description in quantum gravity.

5.1 Bekenstein-Hawking Classical Entropy

The leading classical contribution to the entropy of a black hole in Einstein’s general
relativity is given by the Bekenstein-Hawking entropy, which equals one-quarter of
the area of a (D — 2)-dimensional slice of the horizon in Planck units:

A
ek (8)

However, when the theory of gravity is modified, or in quantum settings, there are
additional correction terms to this entropy formula, which we shall now discuss:

SBH =

5.2 Quantum/Thermal Corrections

If there is any matter outside of the black hole, for example a neutron star orbiting
it, then the entropy of the universe should include that entropy as well. Thus the
total entropy is given by the generalized entropy

_
Sgen = 4Gh

where Sy is the von Neumann entropy —tr (plnp) of the density matrix p of the
matter outside the horizon, and the area A is now an operator depending on the
gravitational backreaction of the quantum fields (hence the expectation value).

To properly define Soy, it is necessary to include all of the quantum field excita-
tions outside of the horizon. These quantum excitations are responsible for Hawking

+ Sout> (9)

13 An alternative formulation of the third law of thermodynamics states that S — 0 as T — 0, but
this supposed “law” is invalid not just for extremal black holes, but also for ordinary thermodynamic
systems with ground state degeneracy.



radiation, and therefore must be included in a consistent analysis. But notoriously
the entanglement entropy across a sharp boundary is ultraviolet divergent in QFT,
even in the vacuum state. So naively, Sy, = 400, due to the “thermal atmosphere”
of modes just outside the horizon. In many calculations, when the quantum back-
reaction on the geometry is small, we can sidestep this issue by only considering
differences of entropy AS,,; between different states. But in general we must do the
same thing that we do with other divergent quantities in QFT, which is to introduce
a momentum cutoff A to regulate the divergences, and then renormalize them by
absorbing the A-dependence into counterterms.

Since the leading order (A”~2) divergence in the entanglement entropy scales with
the area A of the boundary, we can absorb it into a shift in the value of 1/G in Sgy.
In spacetime dimensions D > 4, there are also subleading divergences; these are
absorbed into the higher curvature corrections described in the next section[]

5.3 Higher Curvature/Stringy Corrections

Let us consider a gravitational action which contains, in addition to the Einstein-
Hilbert term, some higher curvature corrections:
R

— D — N
I—/d x\/—gL, L 167G

These higher-curvature terms arise in classical string theory, as well as from loop
corrections in quantum gravity. In an effective field theory, they might also appear
as a bare term in the action[5]

Whatever the origin of the higher-curvature terms, they give rise to corrections

in the black hole entropy formula. Using null coordinates (u,v,y;) where g,, = —1
and 7, j ... point in the (D — 2) transverse directions, and defining KZ.(;‘) = 20.9ij as
the extrinsic curvature in the u-direction (and similar for K};), we use the following

“generalized area” functional in place of Spy:

A= =2 [ap20 5[5 16 TE gk omn].
’ h x\/g |: aRuvuv + aRuiujaRvkvl ] kl + ( ) ( )

+ f (Rabea) | - (10)

MFor numerous references, see the appendix of [41]. Some apparent discrepancies in this renor-
malization procedure have now been resolved. For a non-minimally-coupled scalar field (with a
£$R term in the action), consistency requires us to include e.g. the renormalization of 1/G arising
from the Wald entropy term which is proportional to the integral of —£(¢?) on the horizon slice [42].
For gauge fields, it is necessary to take into account “edge mode” degrees of freedom living on
the horizon slice [43-47] which contribute nontrivially to Sout and its divergences. The graviton
field (s = 2) should also have these edge modes [47], but no fully satisfactory treatment yet exists,
primarily due to the fact that the linearized graviton QFT does not make sense off-shell.

5However, certain terms in £ classically lead to faster-than-light propagation of gravitons, if
their coefficients (relative to Einstein-Hilbert) are too large compared to the string scale (defined
as the lowest energy scale at which fields with spin s > 2 appear) [48,/49]. There might not even
be a well-posed initial data problem [50-52]. Presumably such theories cannot be completed into a
consistent non-perturbative theory of quantum gravity.



The first term is the Wald entropy [28-30,53], and is valid for stationary black holes.
The expression for dynamical settings was derived for f(Riemann) gravity in [54,55]]

5.4 Black Hole Microstates and Induced Gravity

The analogy to statistical mechanics suggests that black hole entropy should have a
state counting description involving some quantum gravity degrees of freedom near
the horizon. Specific state-counting interpretations of black hole microstates have
been proposed in both string theory [61-64] and loop quantum gravity [65-67] (but
see [68]).

We have seen that the generalized entropy Sgen = Agen(A)+Sout(A) is independent
of the renormalization cutoff scale A, but changing A shifts entropy between the two
terms. It is therefore plausible that, if we take the cutoff A to the Planck scale
(the shortest possible distance that can be defined in a quantum gravity theory) then
Agen = 0, and so the black hole entropy comes entirely from the entanglement entropy
contribution to Sey, which could be rendered finite by quantum gravity effects [69).
Since 1/G and all the other terms in £ that contribute to Age, would have to vanish,
this is equivalent [70-72] to the induced gravity scenario of Sakharov |73], in which
the gravitational action arises entirely from loop corrections.

6 Dynamics and the Second Law

This section describes various kinds of thermodynamic inequalities associated with
entropy production for dynamical black holes, in both classical and quantum settings.

6.1 Classical Horizons

When matter falls across a black hole horizon, it dynamically evolves, and hence the
notion of a Killing horizon is no longer available. In its place there are multiple kinds
of horizons obeying a second law, shown in Fig.

First we have a future causal horizon C", defined as the boundary of the past of
some locus of points at infinity |74} 75]E] In the special case where we take the locus
to be all of future null infinity, this gives us the event horizon.

If we consider an arbitrary null surface N in the spacetime, labelled by an affine
null coordinate v, then its expansion is given by

g 1 doA 12)
T 0A dv
16For the special case of quadratic curvature gravity, see |[56-58]. For discussion of the ambiguities
affecting the K* order, and for some partial results when £ includes derivatives of the Riemann
tensor, see [59}/60].
'"This defines a future causal horizon; we can analogously construct a past horizon C~ by time-
reversing the definition. The same applies to the definition of the future apparent horizon below.

10
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Figure 3: (a) The different kinds of horizons C*, T* are plotted on the Penrose diagram
of a wormhole going between two asymptotically AdS regions (with timelike boundaries).
This is not a Killing spacetime due to the gravitational effects of matter (not shown), which
tends to make the diagram wider. Also shown is the HRT extremal surface X discussed in
section and the contracting null surfaces coming out from it. Arrows are drawn in the
direction of increasing area. In holography, this spacetime is dual to two entangled CFT’s
on the left and right. The entanglement wedge dual to CFT, is shaded. (b) A black hole
that forms from the collapse of a star. There is neither an HRT surface, nor past horizons.
C™T is always null, but T may have timelike and spacelike segments (here a dot marks
the transition). On the top-right corner of each diagram, after the black hole settles into a
stationary state, C™ and T both coincide with the late-time Killing horizon.

where 0A is the area of an infinitesimal patch of N. The rate of change of the
expansion is given by the Raychaudhuri equation:
g 62
dv  D-2

— O'Z'jO'ij —_ RW (13)

where o0;; is the shear of N (which measures the gravitational radiation across V).
When the NEC is satisfied, R,, = 8tG T,, > 0, so the whole RHS is negative,

de

- <0 (14)
i.e. gravity always focuses lightrays. If # < 0 intially, then solving requires
that 6 — —oo at some finite v; hence these lightrays must either intersect or hit a
singularity in finite time. Since C'" is defined using a future boundary condition, it
turns out that its lightrays cannot intersect in the future direction, so # > 0. This is
the classical second law for causal horizons [76].

Now consider a compact (D — 2)-dimensional surface s in a spatially noncompact
spacetime (which is reasonable for a black hole solution). If all lightrays shot out from
s in the future-outwards direction have < 0, we call s a trapped surface. In this case
the NEC implies the existence of a singularity to the null future of s given that the

11



spacetime has good causal properties. This is the Penrose singularity theorem [77];
for a historical review see [78]. Also, trapped surfaces always lie inside the event
horizon [79,80]. If # = 0 everywhere on s, we call s a marginally trapped surface.

We can now define a future trapping horizon 7" [81] (a.k.a. a holographic screen
[82]), as a (D — 1)-dimensional surface foliated by leaves, each of which is a future
marginally trapped surface['¥ Because T+ is generically not null, the fact that § =
0 does not imply the area of T is constant in time. Note that we can identify
many possible distinct trapping horizons on the same black hole background, by e.g.
taking an arbitrary foliation of the spacetime into Cauchy slices, and identifying the
outermost marginally trapped surface on each oneE

The NEC also implies that trapping horizons obey various area-increase theo-
rems; in particular a spacelike T has increasing area when moving outwards, while
a timelike 7" has (oddly) increasing area when moving to the past [81]. A future
holographic screen may include segments of both signature, but the NEC implies
they are always stitched together in such a way that the area increases in a consis-
tent direction [85]. Note that if the holographic screen settles down to a stationary
Killing horizon H* at late times, this direction agrees with the time direction of the
corresponding causal horizon C'". The fact that the trapping horizon 7' continues
to exist at late times can also be used to derive the third law [3§].

If the gravitational action includes higher-curvature corrections, the entropy is
given by rather than the area. So long as we restrict attention to linearized
perturbations to a Killing horizon with a non-singular bifurcation surface B, there
always exists a focusing relation for the entropy, and hence a second law [55,/86].
But in the nonlinear regime, there is probably no second law for a general gravity
action [

6.2 Generalized Second Law

At the quantum level, the NEC is violated by the Hawking effect. Instead we wish to
derive a generalized second law (GSL), which states that Sge, monotonically increases
with time on some horizon. In the semiclassical regime, the GSL is most interesting

18Tn the special case where the expansion (1/64) déA/du in the other null direction u is negative,
it is also called a dynamical horizon [83/[84].

191t is also possible to generalize the notion of surface gravity x to trapping horizons, allowing a
local form of the physical process first law , even far from equilibrium [81}83].

20In certain special cases, such as f(R) or the non-minimal scalar, the action is equivalent by field
redefinition to GR with minimal coupling, so necessarily a second law still holds [42/|87]. However
for the next simplest case of Lovelock gravity, the second law can be violated when two black
holes merge [88H90], even though it holds in certain perturbative regimes [55,[86,(91,(92]. The likely
moral is that such theories cannot be completed into a UV-finite theory of quantum gravity unless
the problematic couplings are suppressed to the Planck or string scale [48], in which case, other
competing effects must also be taken into account. See [93] for a partial analysis, although I do not
agree with their claim that entropy can be defined only in equilibrium.
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when expanding around a classically stationary background, so that AA/4Gh and
AS,y are the same order in an hG expansion. Some early limited proofs of the GSL
are reviewed in [94].

The most general derivation of the GSL for causal horizons depends on the fact
that the relative entropy between two states p and o, defined as

S(plo) =tr(plnp) —tr(plno) (15)
is monotonically decreasing when the states are restricted to a subalgebra [95], e.g.
when information is lost between two cuts of a causal horizon C*. In the semiclassical
regime described above, it turns out that for all cuts, S(p|prn) = —Sgen (up to an
additive constant) [23], where ppy is the Hartle-Hawking state defined in Section [3.2]
The proof uses @ together with a linearization of the Raychaudhuri equation ((13))
to show that for each horizon cut v.(y) and state p,
A
tr(pln prrar) = —2L 4 ¢ (16)
where the constant ¢ is independent of v,(y). From this one can derive that the GSL
holds in a differential sense as the cut of C" is pushed to the future [23]:

)
msgen(v*) > 0. (17)

This inequality holds in every semiclassical state of the matter fields. No time asym-
metric assumption is needed besides the fact that we are considering C* rather than
c.

On the other hand, for a future trapping horizon T, it turns out that Sge, does
not always increase [96]. But that is because Tt is defined as a surface foliated by
leaves whose area A is stationary in a null direction. In the quantum regime, it is more
natural to consider a future Q-screen Q%, defined analogously as a (not necessarily
null) surface foliated by leaves whose generalized entropy Sge, is stationary in the
null direction@ It is then possible to prove that the leaves of a Q-screen obey a GSL
(i.e. Sgen montonically increases) [97], assuming the Quantum Focusing Condition
(QFC) described in the next section.

6.3 Quantum Focusing

The QFC [41] states that on a cut of any null surface (not necessarily a horizon), the
second functional derivativﬂ of the generalized entropy is negative:

o o
mmSgen(v*) <0. (18)

Z1Surfaces with §Sgen/0v. < 0 are called quantum trapped; given certain assumptions we can use
the GSL (in place of the NEC) to prove a quantum singularity theorem given the existence of such
surfaces [75].

22These functional derivatives are densitized, i.e. they represent the increase per area element A

13



This generalizes the classical focusing inequality to quantum situations. The
QFC is stronger than the GSL on either C* or T, and was motivated by the desire
to prove a quantum version [98] of the generalized covariant entropy bound [99]
Presumably it originates from some deep fact about the nature of quantum gravity
microstates on a null surface.

For y # ¢/, the QFC follows from strong subadditivity (another form of montonic-
ity of relative entropy), so the most interesting part of is the local piece proportional
to a delta function 6(y —3’). On a nearly stationary null surface perturbed by quan-
tum fields, this reduces to a lower bound on the stress tensor called the quantum null
energy condition (QNEC) [41],

(T > 2

= or

S”, (19)

where S” is the local piece of the second null derivative of the entropy, evaluated on
either side of the null surface. This inequality applies to arbitrary excited states, and
has been proven in many field theories@ confirming the QFC in these cases.

7 Holographic Black Holes

After arguing for the validity of the holographic principle, we will describe some
profound implications for the information inside of black holes.

7.1 The Information Puzzle

What is the ultimate reason why black holes obey a second law? The majority
opinion (reviewed in [115])%) is that information is not actually lost inside of black
holes; it only gets scrambled somehow into the near-horizon degrees of freedom, and
in principle the information is still accessible from the outside, if we have access to
the full quantum gravity microstates discussed in Sec.

23This is one of several proposed bounds on the maximum entropy that can be contained in
a given region (e.g. [99H101]). However, the divergence of entanglement entropy in QFT makes
it difficult to give a precise definition of these “entropy bounds”. When the effects of Hawking
radiation are fully taken into account, no substantive entropy bound is needed for the validity of the
GSL [231]94//102-104]. The modern approach to the subject, pioneered by Casini and collaborators
[L05H108], is to recast the entropy bounds into a form where they automatically hold in any QFT,
e.g. because of the positivity or monotonicity of relative entropy .

24The QNEC (and hence the QFC in this regime) has been shown for free or superrenormalizable
scalars [109], for holographic theories [110], and for general D > 2 field theories that flow to an
interacting conformal fixed point in the ultraviolet [111]—oddly, the QNEC appears to be saturated
in this last case [112}{113]—and there are plausible indications that it holds in d = 2 as well [96,/114].
There may even be a quantum dominant energy condition (QDEC) [114].

Z5But see [116] for a dissenting review giving the arguments for information loss.
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The following argument for information preservation is based on an argument
by Marolf [117,/118]: Suppose we have a gravitational theory embedded in a space-
time with a timelike boundary (e.g. an asymptotically AdS spacetime) with suitable
reflecting boundary conditions. (There exist more subtle versions of this argument
that apply to asymptotically flat spacetimes.) Let us define A(t) as the algebra of
observables accessible at the boundary in a small interval around time ¢ (Fig. |4]).

Alt:)

|
i Halweys
‘X’e"meu:‘ursblﬁ

@ bf)u ,,f) w

| .
: ' I Alt,)
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Figure 4: A black hole is formed from collapse by exciting a scalar field ¢ using operators
available in the boundary algebra A(¢1) at an early time ¢;. But because the Hamiltonian
H is measurable using the gravitational field at infinity, the details of the collapse are still
encoded in the boundary algebra at any later time to > t;, even before the black hole totally
evaporates into Hawking radiation!

We assume that the algebras satisfy the following axioms:

1. A(t) is closed under addition, multiplication and reasonable limits (such as
exponentiation). [QM]

2. A(t) includes the Hamiltonian H, since in diffeomorphism-invariant theories
such as GR, the energy can be measured from the ADM mass [119] of the
gravitational fields at infinity. [GR]

3. This Hamiltonian H generates time translations by acting on the Hilbert space
of the full system in the usual QM way. [QM]FY

4. A(t) includes nontrivial field operators (e.g. a scalar field ¢ smeared on the

boundary near t) whose excitations can propagate into the bulk, and form a
black hole from collapse. [AdS field theory]

26To see that Assumption [3| (by itself) is compatible with information loss, note that it holds for
QFT on a fixed spacetime with a Killing horizon, where H is the Killing energy of the quantum
fields.
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Now there will be many ways of forming a black hole from boundary operators. But
any such operator can also be written in the algebra of observables A(t;) at any later
time ¢ > ¢; using the Heisenberg formula:

pltr) = et ()i, (20)

Hence the information in ¢ used to form the black hole is still accessible at time ¢, on
the boundary for a sufficiently precise experiment. We conclude that the information
accessible on the boundary must evolve unitarily/’|

Although we did not assume the holographic principle a priori, this conclusion
is in agreement with AdS/CFT[®] a duality (passing many highly nontrivial checks)
which relates string/M-theory on backgrounds with negative cosmological constant
(the AdS) to conformal field theories living on the timelike boundary (the CFT) ]
In the limit where the boundary theory has a large number of species N and strong
coupling A, the bulk theory becomes classical GR. But the CFT has unitary time
evolution just like any other QFT.

On the other hand, unless information is lost, it seems difficult or impossible
to avoid large violations of semiclassical physics in regions far from the singularity
[122-125]. In particular, it is hard to avoid the conclusion that either (i) sufficiently
old black holes have no smooth interior (the “firewall”), or (ii) the quantum modes
inside the horizon are reconstructed from the boundary in a nonlinear way (violating
the usual measurement rules of QM). See Harlow [126] for a helpful review of some
of these puzzles.

7.2 Holographic Entropy Formula

Let us proceed on the assumption that the holographic principle is true and the
boundary information is preserved. In this case, the increasing generalized entropy
Sgen Of a dynamically evolving black hole must really be a coarse-grained entropy, i.e.
an entropy obtained by forgetting some information associated with the microscopic
degrees of freedom (just as in the thermodynamics of an ordinary system). The fine-
grained entropy (i.e. Spay = —tr(plnp) of the boundary density matrix p) would
then be constant with time.

How do we measure the fine-grained entropy of a black hole? In order to ensure
that the black hole is not in a pure state, it is convenient to consider the case of
a two-sided black hole (which might be dynamically evolving), which in AdS/CFT
corresponds to an entangled state of the two boundary CFT’s. See Fig. [l Then

2TThis argument allows for the possibility that there might be some information behind horizons
which is never located on the boundary [120].

ZFor a review see [121].

29 Although AdS/CFT applies only when the asymptotic structure of spacetime has a negative
cosmological constant A, black hole thermodynamics behaves similarly regardless of the sign of A.
It is therefore plausible that many of these holographic conclusions will continue to hold.
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the Hubeny-Rangamani-Takayanagi (HRT) formula tells us that the leading order
boundary entropy (on either side) is given by the area of an “extremal” surface X in
the bulk |127-129]:
AX]
AGh
where X is a compact D — 2 dimensional surface that divides the two boundaries of
the wormhole, such that 6, = 6, = 0, i.e. it is marginally trapped in both the past
and the future directions (if there happen to be multiple such surfaces, we use the
one that minimizes the entropy).m

Quantum [130-133] or higher curvature [54,56-58] bulk effects are dealt with by
replacing the area with a generalized entropy functional, exactly as in sections [5| or
6l Including the leading bulk loop corrections, this tells us that

Shay = (21)

Svay = (Agen[X]) + Spun[X], (22)

where Spu[X] is the entropy in the spacetime region on one side of X (known as the
entanglement wedge) and Spy[X] is the surface term (whose leading order piece is
A/AGHh).

By taking the first order variation p + dp of , it is also possible to derive
[134,|135] a corresponding linear operator equation relating the bulk and boundary
modular Hamiltonians K = —In p:

K = Agen X] + KX, (23)

This is a remarkable formula since in general both K’s are highly nonlocal, and p
could be any QFT state in the semiclassical regime! This equivalence suggests ways to
reconstruct data inside the entanglement wedge by using the “modular flow”, i.e. the
evolution defined using K as a Hamiltonian |134}/136,137]. (Previous reconstruction
techniques only allowed one to reconstruct data outside the event horizon [138].)

Combining and , we see that the relative entropy of the boundary
also agrees with the relative entropy in the entanglement wedge:

Sbay(p|0) = (K'7), = S(p) = Shu(p | 0)[X]. (24)

This formula can be used to derive entanglement wedge reconstruction, the idea that—
in a suitable “code subspace” of states in which semiclassical physics is valid [135]
139]—the data on just one of the two boundary CFT’s fixes all the data in the
entanglement wedge on its side of X (and vice versa) [135}/140-143].

30This is a special case of a more general principle that allows one to calculate boundary en-
tanglement entropies, using extremal surfaces anchored to boundary regions. This formula has
been derived by a path integral argument [40], using a clever analytic continuation to extend the
Gibbons-Hawking derivation |39] of black hole entropy to surfaces without a Killing boost symmetry.
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7.3 Thermalization and Scrambling

This leaves the question of how to interpret the horizon area of a nonstationary black
hole. The fluid-gravity correspondence relates the long-wavelength dynamics on a
horizon to hydrodynamics on the CFT side |144]. However, if we wish to provide a
stat-mech interpretation of the growing areas of C* or T, then we need to identify
some specific coarse-graining procedure that gives rise to the entropy increase.

So far this has been done only for spacelike trapping horizons T (satisfying
mild additional assumptions), where it can be shown using HRT and the NEC
that the area of each marginally trapped surfaces p in T is proportional to the
maximum boundary entropy Shqy that is compatible with the classical data outside
of p [145]146]:

Ay

G (25)

Seoarse = Max(Spay : data outside of p) =
This naturally explains the area-increase theorem in the case of spacelike T"’s, since
as we are maximizing the entropy subject to fewer constraints as we move outwards.
[145,|146] argue that this is dual to a coarse-grained second law of thermodynamics
on the boundary CFT. (It is not yet known how to interpret the area of the causal
horizon C" as a coarse-grained entropy [147,|148], and several conjectures [148}|149]
have already been falsified [150].)

Even after the boundary CFT has reached its final coarse-grained entropy (ther-
malization), there is a somewhat longer timescale required for the information in a
single degree of freedom to acquire a large commutator with every other degree of
freedom (scrambling) [151} 152].@ The scrambling time can be calculated holograph-
ically from the gravitational interaction of shock waves propagating near the black
hole horizon [153]. Scrambling physics can be used to facilitate quantum teleporta-
tion between two entangled CFT’s, which turns out to be holographically dual to a
traversable wormhole |[154-156]. It also plays an important role in recent speculation
involving the quantum complexity (number of gates in a quantum circuit) of black
hole states [157,/158] and the firewall paradox |123,|124].

Hopefully all these vexing issues will become more clear once we have a good un-
derstanding of how to reinterpret the geometry of spacetime in terms of the quantum
information flowing through various surfaces. From this perspective, black hole hori-
zons are just an illuminating special case of principles that should be valid everywhere
in the universe.
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