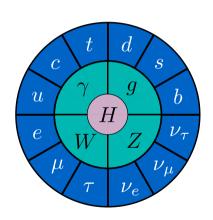
Three-body resonances from Lattice QCD

ω-meson, PRL 133 (2024) 21, arXiv:2407.16659, π(1300): arXiv:2510.09476

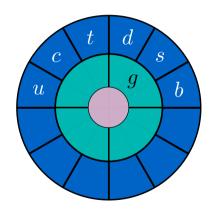
Carsten Urbach

Standard Model of Particle Physics



standard model highly successful

Standard Model of Particle Physics



- standard model highly successful
- strong interaction part
- ⇒ quantum chromodynamics (QCD)
- gives rise to hadron spectrum mesons and baryons
- still new hadrons are being found X, Y, Z states
- most hadrons are resonances

The ω -meson

experimentally discovered in 1961

[Maglich et al., PRL 7 (1961)]

 theoretically predicted by Nambu (1957) to explain the electromagnetic form factors of the nucleon

[Nambu, Phys. Rev. 106, 1366 (1957)]

 also expected in the vector meson dominance (VMD) picture

[Sakurai, Ann. Phys. 11, 1 (1960)]

 dominates the isoscalar response in VMD

1961 press conference on ω discovery

[NARA & DVIDS Public Domain Archive, photographer: D. Cooksey]

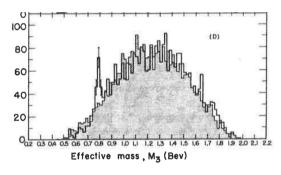
The ω -meson

triplets identified in

$$\bar{p}+p\rightarrow\pi^{+}+\pi^{+}+\pi^{-}+\pi^{-}+\pi^{0}$$
 decays

•
$$I^G(J^{PC}) = 0^-(1^{--})$$

- PDG: $M_{\omega}=782$ MeV, width 8.5 MeV
- $\approx 90\%$ decays to $\pi^+\pi^-\pi^0$
- about 1.5% $\rightarrow \pi^+\pi^-$



[B. Maglich et al, PRL 7 (1961)]

(BeV is one Bevatron \equiv GeV)

What Do We Know Theoretically?

 in 2022, we reviewed the theory status of hadron resonances

```
[Mai, Meißner, Urbach, Phys.Rept. 1001 (2023) 1-66]
```

 focus on calculations from first principles

5.	Results: Well separated resonances					
	5.1.	The $\rho(7)$	70)-resonance			
	5.2.	The K^* (he <i>K</i> *(892)-resonance			
	5.3.	The Δ (1	232)-resonance			
	5.4.	The $f_0(5)$	00)-resonance			
6. Results: Coupled channels/thresholds						
6.1. Light mesons			esons			
	6.2.	The Rop	er-resonance N(1440)			
			open and closed charm systems			
		6.3.1.	The $D_0^*(2300)$			
		6.3.2.	The $D_0^*(2300)$ from experimental data.			
		6.3.3.	The $D_{s0}^*(2317)$			
		6.3.4.	The <i>X</i> (3872)			
		6.3.5.	The $Z_c(3900)$			
	6.4.	Other exotic states				
		6.4.1.	States involving heavy-light mesons			
		6.4.2.	Dibaryon states			

What Do We Know Theoretically?

 in 2022, we reviewed the theory status of hadron resonances

```
[Mai, Meißner, Urbach, Phys.Rept. 1001 (2023) 1-66]
```

 focus on calculations from first principles

5.	Resul	ilts: Well separated resonances			
	5.1.				
	5.2.	The <i>K</i> *(892)-resonance			
	5.3.	The △(1232)-resonance			
	5.4. The $f_0(500)$ -resonance				
6.	6. Results: Coupled channels/thresholds				
	6.1.	. Light mesons			
	6.2.	The Roper-resonance N(1440)			
	6.3.	Specific open and closed charm systems			
		6.3.1. The $D_0^*(2300)$			
		6.3.2. The $D_0^*(2300)$ from experimental data.			
		(2217)			

given the huge number of experimentally known states:

surprisingly little is know theoretically!

almost exclusively $H \longrightarrow XY$

₀ (2317)
3872)
(3900)
tes
involving heavy-light mesons on states

The $\pi(1300)$ Excited Pion

- first excited pion state
- first observed in 1981

```
[Ananeva et al., JETP Lett. 34, 488 (1981)]
```

- mass of 1300 ± 100 MeV 200 600 MeV width
- even existence debated

[P. d'Argent et al., JHEP 05, 143]

 $Citation: R.L. \ Workman \ \textit{et al.} \ (Particle \ Data \ Group), \ Prog. Theor. Exp. Phys. \ \textbf{2022}, \ 083C01 \ (2022)$

π (1300) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	$ ho\pi$	seen
Γ_2	$\pi(\pi\pi)_{S ext{-wave}}$	seen
Γ ₃	$\gamma \gamma$	

The $\pi(1300)$ Excited Pion

- first excited pion state
- first observed in 1981

```
[Ananeva et al., JETP Lett. 34, 488 (1981)]
```

- mass of 1300 ± 100 MeV 200 600 MeV width
- even existence debated

[P. d'Argent et al., JHEP 05, 143]

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

π (1300) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁ Γ ₂ Γ ₃	$ ho\pi \pi \pi (\pi\pi)s$ -wave $\gamma\gamma$	seen seen

- almost degenerate to the $\eta(1295)$ and K(1460)
- interesting insights into emergence of hadrons
- ⇒ even for excited pions room for significant contributions!

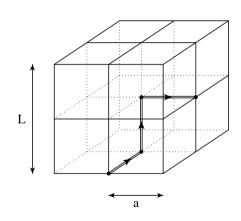
Quantum Chromodynamics

$$S[A_{\mu}, \bar{\psi}, \psi] = \int d^4x \; \left\{ \frac{1}{4} G_{\mu\nu}^2 + \bar{\psi}_q \left(\mathrm{i} \gamma_{\mu} D_{\mu} + m_q \right) \psi_q \right\}$$

- astonishingly simple action, intriguingly complex dynamics
- running coupling: QCD is non-perturbative at low energies
- ⇒ hadron spectrum requires non-perturbative methods

Lattice QCD Regularisation

- quantum field theory requires regularisation
- lattice regularisation:
- ⇒ discretise space-time
 - hyper-cubic $L^3 \times T$ -lattice with lattice spacing a
 - \Rightarrow momentum cut-off: $k_{\text{max}} \propto 1/a$
 - derivatives ⇒ finite differences
 - integrals \Rightarrow sums
 - gauge potentials A_{μ} in $G_{\mu\nu} \Rightarrow$ link matrices U_{μ} (' \longrightarrow ')



work in Euclidean space-time ⇒ use Monte Carlo

Lattice QCD Regularisation

- Monte Carlo: access to equilibrium, vacuum properties
- fundamental observables:
 Euclidean correlation functions

$$\langle \mathcal{O}_i^{\dagger}(p,t) \, \mathcal{O}_j(p,t') \rangle \propto \sum_n c_{i,n} c_{j,n} e^{-E_n t}$$

- with interpolating operators \mathcal{O}_i with certain quantum numbers
- simulations at bare parameters need to renormalise

Lattice QCD Regularisation

- Monte Carlo: access to equilibrium, vacuum properties
- fundamental observables:
 Euclidean correlation functions

$$\langle \mathcal{O}_i^{\dagger}(p,t) \, \mathcal{O}_j(p,t') \rangle \propto \sum_n c_{i,n} c_{j,n} e^{-E_n t}$$

- with interpolating operators \mathcal{O}_i with certain quantum numbers
- simulations at bare parameters need to renormalise

• continuum limit:

$$\lim_{a\to 0}$$

(i.e. at least 3 lattice spacing values)

• infinite volume limit:

$$\lim_{L o\infty}$$

• physical mass limit:

$$\lim_{m_\ell \to m_\ell^{\rm phys}} \quad {\rm or} \quad M_\pi^2 \to (M_\pi^{\rm phys})^2$$

And then: Compute the Spectrum?

- lattice stochastic methods: work in finite volume / Euclidean space-time
- ⇒ real valued, quantised eigenvalues of the lattice Hamiltonian no continuum of states
 - Maiani and Testa: interactions properties cannot be studied directly

[Maiani and Testa, (1990)]

- ⇒ there is no one-to-one correspondence of an energy level to a resonance state
- the connection is only provided by the Lüscher method!

And then: Compute the Spectrum?

ves and no!

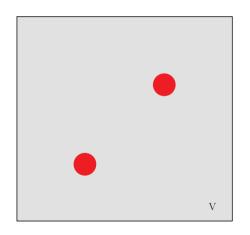
- lattice stochastic methods: work in finite volume / Euclidean space-time
- ⇒ real valued, quantised eigenvalues of the lattice Hamiltonian no continuum of states
 - Maiani and Testa: interactions properties cannot be studied directly

[Majanj and Testa, (1990)]

- there is no one-to-one correspondence of an energy level to a resonance state
- the connection is only provided by the Lüscher method!

Lüscher Method

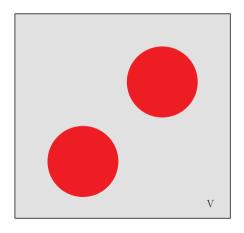
finite volume: boon and bane!



- for $V \to \infty$:
- \Rightarrow interaction probability very low
- $\Rightarrow E_{2p}(p=0) = 2E_{1p}$

Lüscher Method

finite volume: boon and bane!



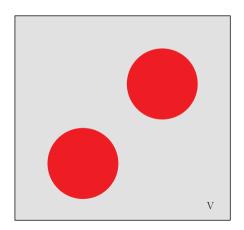
- for $V \to \infty$:
- \Rightarrow interaction probability very low

$$\Rightarrow E_{2p}(p=0) = 2E_{1p}$$

- for finite *V*:
- ⇒ interaction probability rises
- $\Rightarrow E_{2p}(p=0)$ receives corrections $\propto 1/V$

Lüscher Method

finite volume: boon and bane!



- for $V \to \infty$:
- ⇒ interaction probability very low

$$\Rightarrow E_{2p}(p=0) = 2E_{1p}$$

- for finite *V*:
- ⇒ interaction probability rises
- $\Rightarrow E_{2p}(p=0)$ receives corrections $\propto 1/V$
- Lüscher: correction in 1/V related to scattering properties!

[Lüscher, 1986]

The 1+1-dimensional Analog

- plane wave acquires phase shift $\delta(k)$
- finite extend L, periodic BC

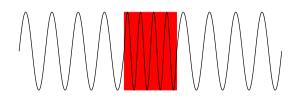
$$e^{\mathrm{i}kL + 2\mathrm{i}\delta(k)} = e^{ik0} = 1$$

quantisation condition

$$k_n L + 2\delta(k_n) = 2n\pi$$

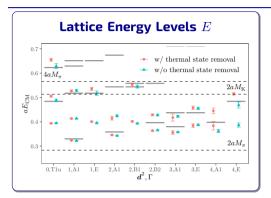
ullet momenta k_n from dispersion relation

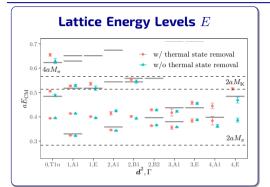
$$W_n = 2\sqrt{m^2 + k_n^2}$$



Procedure

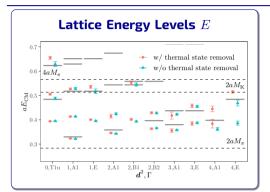
- $oldsymbol{0}$ determine non-interacting m
- $oldsymbol{2}$ determine energies W_n





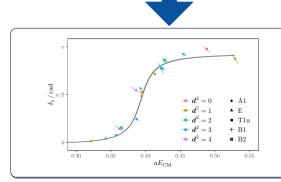
Determinant Equation

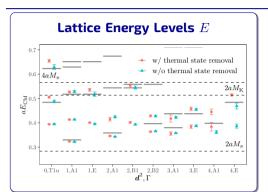
$$\det\left[\mathcal{M}^{\Gamma,\mathbf{d}}(E) - \cot(\delta)\right]^{\Lambda} = 0$$
 (\mathcal{M} Lüscher function)



Determinant Equation

$$\det\left[\mathcal{M}^{\Gamma,\mathbf{d}}(E) - \cot(\delta)\right]^{\Lambda} = 0$$
(\mathcal{M} Lüscher function)

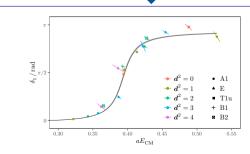




e.g. Breit-Wigner or better

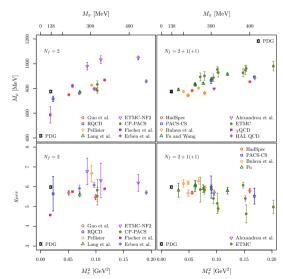
Determinant Equation

$$\det\left[\mathcal{M}^{\Gamma,\mathbf{d}}(E) - \cot(\delta)\right]^{\Lambda} = 0$$
(\mathcal{M} Lüscher function)



Example: The $\rho(770)$ **Meson**

- ρ -resonance a poster Breit-Wigner resonance
- ρ decays to $\pi\pi$ in a P-wave
- best studied resonance from Lattice OCD
- summary of 16 Lattice studies
 [Mai, Meißner, Urbach, Phys. Rept. 1001 (2023) 1-66]
- bare lattice results for $N_f=2$ and $N_f=2+1(+1)$
- systematics clearly visible



Example: The $\rho(770)$ **Meson**



A Third Particle Enters the Game

- Three particle decays highly relevant
- Three-pion decays of $K, \eta, \omega, a_1(1260), a_1(1420), \pi(1300)$
- Decays of exotica, e.g.: $X(3872) \rightarrow \bar{D}^*D \rightarrow \bar{D}D\pi$, $Y(4260) \rightarrow J/\psi \, \pi\pi$
- Roper resonance $o \pi N$ and $\pi\pi N$

Lattice Energy Levels ${\cal E}$ Finite Volume, discrete, real

A Third Particle Enters the Game

- Three particle decays highly relevant
- Three-pion decays of $K, \eta, \omega, a_1(1260), a_1(1420), \pi(1300)$
- Decays of exotica, e.g.: $X(3872) \rightarrow \bar{D}^*D \rightarrow \bar{D}D\pi$, $Y(4260) \rightarrow J/\psi \, \pi\pi$
- Roper resonance $\to \pi N$ and $\pi\pi N$

Lattice Energy Levels EFinite Volume, discrete, real

Interaction Properties
Infinite Volume, possibly complex

A Third Particle Enters the Game

- Three particle decays highly relevant
- Three-pion decays of $K, \eta, \omega, a_1(1260), a_1(1420), \pi(1300)$
- Decays of exotica, e.g.: $X(3872) \rightarrow \bar{D}^*D \rightarrow \bar{D}D\pi$, $Y(4260) \rightarrow J/\psi \, \pi\pi$
- Roper resonance $\to \pi N$ and $\pi\pi N$

Three equivalent EFTs

- RFT (Relativistic Field Theory)

 [Hansen, Sharpe, 2014]
- NREFT (Non-relativistic EFT)
 [Hammer, Pang, Rusetsky, 2017]
- FVU (Finite Volume Unitarity)
 [Mai. Döring. 2017]

Here: Finite Volume Unitarity (FVU)

builds on

- unitarity (→ probability conservation)
- analyticity (\rightarrow causality)
- crossing symmetry

Here: Finite Volume Unitarity (FVU)

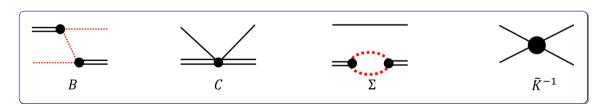
builds on

- unitarity (→ probability conservation)
- ullet analyticity (o causality)
- crossing symmetry

Quantisation Condition

$$\det \left[2L^3 E_{\mathbf{p}} (\tilde{K}^{-1} - \Sigma^L) - B - C \right]^{\Lambda} = 0$$

[Mai & Döring, EPJA 53 (2017)]



Lattice Details

based on CLOCD ensembles

[CLOCD, Hu et al, PRD 109 (2024)]

- tadpole tree-level Symanzik improved gauge
- $N_f = 2 + 1$ dynamical quark flavours
- tadpole improved clover fermions
- one level of stout smearing with $\rho = 0.125$

[Morningstar and Peardon, PRD 69 (2004)]

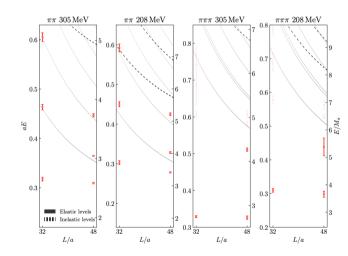
• possible $O(a\alpha_s)$ lattice artefacts

Ensemble	Volume	M_π/MeV	N_{confs}
F32P21	$32^{3} \times 64$	206.8(2.1)	459
F48P21	$48^3 \times 96$	207.58(76)	221
F32P30	$32^3 \times 96$	303.61(71)	777
F48P30	$48^3 \times 96$	304.95(49)	201

- two pion mass values
- with two volumes each
- a = 0.07746(18) fm

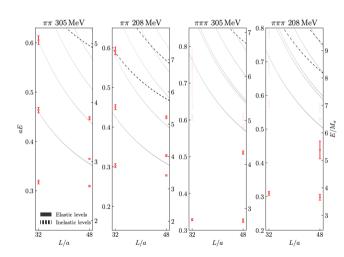
First look at energy levels:

- red: interacting energy levels
- see attractive interaction for $\pi\pi$ and $\pi\pi\pi$
- $M_{\pi}=305$ MeV: ω bound
- $M_{\pi}=208$ MeV: ω decays
- need to parametrise



Quantisation Condition

$$\det\left[2L^3E_{\mathbf{p}}(\tilde{K}^{-1}-\Sigma^L)-B-C\right]^{\Lambda}=0$$



Quantisation Condition

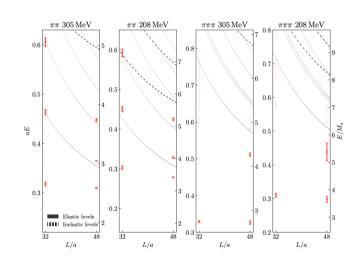
$$\det\left[2L^3E_{\mathbf{p}}(\tilde{K}^{-1}-\Sigma^L)-B-C\right]^{\Lambda}=0$$

Generic Form

$$K^{-1} \propto a_0 + a_1 \sigma_p(s)$$

 $c_{11} = \frac{c_0}{s + M^2} + c_1$

 σ_p : two-body invariant mass



Quantisation Condition

$$\det\left[2L^3E_{\mathbf{p}}(\tilde{K}^{-1}-\Sigma^L)-B-C\right]^{\Lambda}=0$$

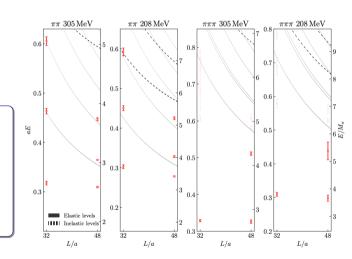
EFT Form

EFT with vector mesons

[for a review: Meißner, Phys.Rept. 161 (1988)]

• re-express in $M_{\pi,\alpha\omega}$, f_{π} and g

$$g_{\rho\pi\pi} = g_{\omega\rho\pi} = g$$



Quantisation Condition

$$\det\left[2L^3E_{\mathbf{p}}(\tilde{K}^{-1}-\Sigma^L)-B-C\right]^{\Lambda}=0$$

EFT Form

- EFT with vector mesons
 - [for a review: Meißner, Phys.Rept. 161 (1988)]
- re-express in $M_{\pi,\rho\omega}$, f_{π} and g

$$g_{\rho\pi\pi} = g_{\omega\rho\pi} = g$$

• $f_{\pi}(M_{\pi}^2)$ from chiral PT

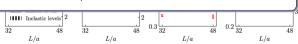
[Gasser,Leutwyler, Annals Phys. 158 (1984)]

EFT2 Form (two parameters)

- $M_{
 ho}=\sqrt{2}gf_{\pi}$ (KFSR)
- $M_{\omega} = M_{\rho} + \delta$

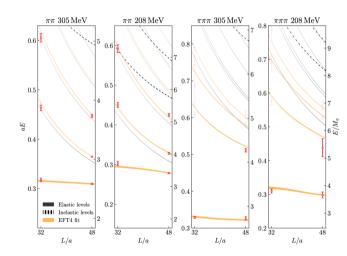
EFT4 Form (four parameters)

- $\bullet \ M_{\rho} = M_V + dM_{\pi}^2$
- $M_{\omega} = M_{\rho} + \delta$



Finite Volume Spectrum: EFT4 Fit

- parameters g, M_V, d, δ
- data described reasonably well
- even not included energy levels described
- removing ensemble with smallest $M_\pi \cdot L$ doesn't change results significantly
- $\chi^2/\text{dof} = 2.3$

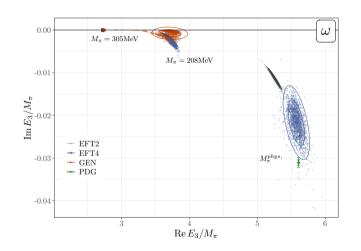


Final Step: Pole Positions (ω meson)

- $\bullet \ \, \text{with} \, C, \tilde{K} \, \text{as input}$
- solve an integral equation
 (Mai. Döring, EPJA 53 (2017))
- analytically continue to 2nd Riemann Sheet
- \Rightarrow Pole positions of ω

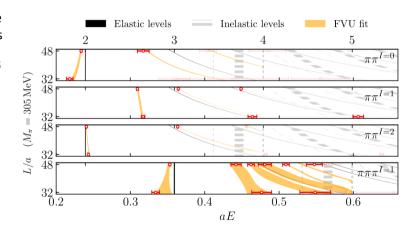
$$778.0(11.2){-}i3.0(5) \ \, \mathrm{MeV}$$

[Yan et int. CU, PRL 133 (2024) 21]



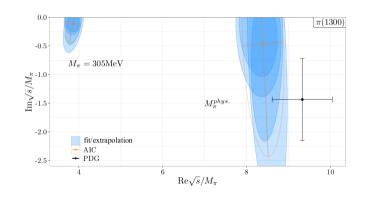
$\pi(1300)$: The Same Procedure

- more difficult due to large expected resonance mass
- three $\pi\pi$ isospin channels relevant
- ground state is a single pion
- for $M_\pi=305\,{\rm MeV}$ sufficient no of states below $6M_\pi$
- at $M_\pi=208$ MeV too few states



$\pi(1300)$ Pole Position

- rely on $M_\pi=305~{\rm MeV}$ ensembles only
- perform a model averaging procedure
- inverse amplitude method for extrapolation in M_π^2
- with large uncertainties we find evidence for a pole



The (notorious) Challenge: Extracting Energy Levels

Euclidean Correlation Functions

$$C(t) = \sum_{l=0}^{N_s} A_l \, e^{-E_l t}$$

$$E_0 < E_1 < \dots$$

- obtained from stochastic (MC) simulations
- want to estimate energy levels E_l
- and amplitudes A_l (matrix elements)

The (notorious) Challenge: Extracting Energy Levels

Euclidean Correlation Functions

$$C(t) = \sum_{l=0}^{N_s} A_l \, e^{-E_l t}$$

$$E_0 < E_1 < \dots$$

- obtained from stochastic (MC) simulations
- want to estimate energy levels E_l
- and amplitudes A_l (matrix elements)

Challenge

signal-to-noise problem

StN
$$\propto \exp(-\Delta E t)$$

with in general $\Delta E > 0$

[Lepage (1989)]

- signal deteriorates exponentially
- increasing severity with l

Example: The Effective Mass of the Nucleon

effective mass

$$M_{\mathsf{eff}}(t) = -rac{1}{\delta t}\log\left(rac{C(t+\delta t)}{C(t)}
ight)$$

• since $E_0 < E_{l \neq 0}$

$$\lim_{t\to\infty}M_{\rm eff}(t)=E_0$$

- all other contributions to C exponentially suppressed
- but t finite
 - \Rightarrow excited state contaminations

Example: The Effective Mass of the Nucleon

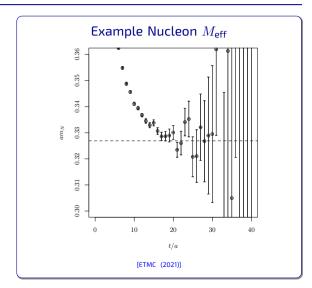
effective mass

$$M_{\mathrm{eff}}(t) = -\frac{1}{\delta t} \log \left(\frac{C(t+\delta t)}{C(t)} \right)$$

• since $E_0 < E_{l \neq 0}$

$$\lim_{t\to\infty}M_{\rm eff}(t)=E_0$$

- all other contributions to C exponentially suppressed
- but t finite
 ⇒ excited state contaminations



Example: The Effective Mass of the Nucleon

effective mass

 $M_{\rm eff}(t) = -\frac{1}{\delta t} \log \left(\frac{C(t+\delta t)}{C(t)} \right)$

) Goal

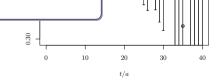
• since $E_0 < E_{l \neq 0}$

 $\lim_{t\to\infty}$

Find a method that either works at smaller t-values or reduces the noise at large t-values

 all other contributions to C exponentially suppressed

- but t finite
 - ⇒ excited state contaminations



[ETMC (2021)]

Example Nucleon $M_{\rm eff}$

Generalised Effective Mass

build correlator matrix

$$C_{\alpha\beta}(t) = \langle O_{\alpha}^{\dagger}(0)O_{\beta}(t)\rangle$$

- ullet O_lpha with appropriate quantum numbers
- cast as eigenvalue problem

$$C(t_0)^{-1} \cdot C(t) v_n(t, t_0) = \lambda_n(t, t_0) v_n(t, t_0)$$

with gen. effective mass

$$\lambda_n(t,t_0) \propto e^{-E_n(t-t_0)}$$

• but: no. of operators limited...

Generalised Effective Mass

build correlator matrix

$$C_{\alpha\beta}(t) = \langle O_{\alpha}^{\dagger}(0)O_{\beta}(t)\rangle$$

- ullet O_lpha with appropriate quantum numbers
- cast as eigenvalue problem

$$C(t_0)^{-1} \cdot C(t) v_n(t, t_0) = \lambda_n(t, t_0) v_n(t, t_0)$$

with gen. effective mass

$$\lambda_n(t,t_0) \propto e^{-E_n(t-t_0)}$$

• but: no. of operators limited...

create more operators for free!

$$O_{\Delta t,\alpha}(t) = O_{\alpha}(t + \Delta t) = T(\Delta t) O_{\alpha}(t)$$

Generalised Pencil of Function method

[Schiel, PRD92, 034512 (2015)]

leads to the square Hankel matrix

$$H_{ij}^{\alpha\beta,m}(t) = C_{\alpha\beta}(t+i+j), \quad i+j < 2m$$

and the eigenvalue problem

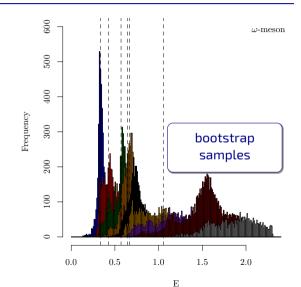
$$H^{m}(t_{0})^{-1} \cdot H^{m}(t) v_{n}(t, t_{0}) = \lambda_{n}(t, t_{0}) v_{n}(t, t_{0})$$

And Here Comes the Noise...

 the method enforces an effective noise model

$$e^{\mathsf{Re}(E)t}e^{\mathsf{i}\,\mathsf{Im}(E)t}$$

- the larger the matrix, the more spurious modes are found
- and they mix with the physical ones



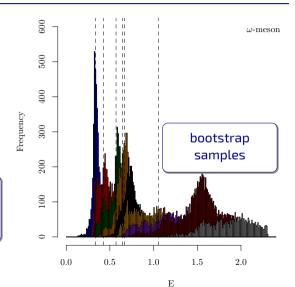
And Here Comes the Noise...

 the method enforces an effective noise model

$$e^{\mathrm{Re}(E)t}e^{\mathrm{i}\,\mathrm{Im}(E)t}$$

- the larger the matrix, the more spurious modes are found
- and they mix with the physical ones

find/invent criteria for physical states or reformulate the problem!



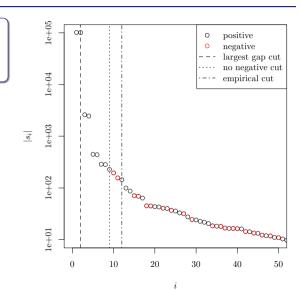
The Reformulated Problem

What is the best approximation to the correlator with k terms in a Frobenius norm?

- solution is known!
- diagonalise H (or SVD)

$$H = U^{\dagger}SU$$

- set all but the k largest modulus eigenvalues $|s_{i>k}|$ to zero
- reconstruct $\tilde{H}=U_k^\dagger S_k U_k$ and solve for eigenvalues

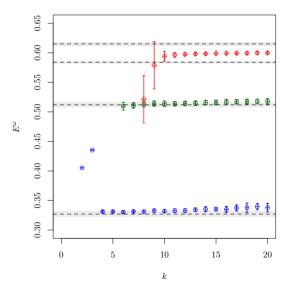


THC Results

 truncated Hankel correlator (THC) method

[Ostmeyer, Urbach, arXiv:2510.15500]

- single parameter k
- all data included
- stable spectrum for $k \ge k_{\mathsf{cut}}$
- directly applicable to imaginary time evolution in quantum computing



What can be improved...

- ω and $\pi(1300)$ are clearly exploratory studies!
- more ensembles, more M_{π} -values, larger volumes
- more energy levels by including more frames and irreps
- include also operators with strange quarks
- investigate the φ and the ω - φ mixing
- take the continuum limit
- include other partial waves

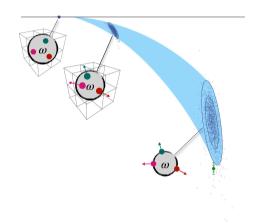
Summary

- resonances in LQCD challenging problem
- presented a first calculation of the ω and $\pi(1300)$ resonances
- using EFTs, obtained results at physical point
- ω pole position

$$(778(11)-i3.0(5))$$
 MeV

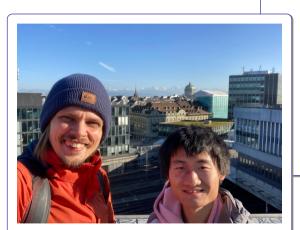
• $\pi(1300)$ pole position

$$(1169(46) - i62(170))$$
 MeV



[Yan, Mai, Garofalo, Meißner, Liu, Liu, Urbach, arXiv:2407.16659]

Special Thanks to ...



Maxim Mai and Haobo Yan

Marco Garofalo

Johann Ostmeyer