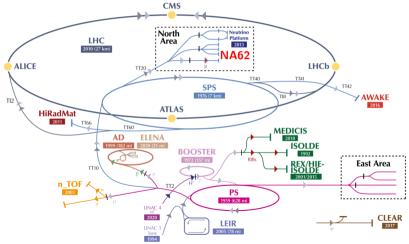


FIP/LLP searches at NA62


Jan Jerhot

Max Planck Institute for Physics

Light Dark World 2025 September 18, 2025

Fixed-target experiment at CERN SPS (north area - ECN3 experimental cavern)

• Main goal: study of ultra-rare $K^+ \to \pi^+ \nu \bar{\nu}$ decay, yet NA62 covers: broad kaon physics program (precision measurements, LFV/LNV decays, LLP searches) beam-dump physics (LLP searches) program + more exotic searches (neutrino tagging, ...)

• Main goal: study of ultra-rare $K^+ \to \pi^+ \nu \bar{\nu}$ decay, yet NA62 covers: broad kaon physics program (precision measurements, LFV/LNV decays, LLP searches) beam-dump physics (LLP searches) program + more exotic searches (neutrino tagging, ...)

• Main goal: study of ultra-rare $K^+ \to \pi^+ \nu \bar{\nu}$ decay, yet NA62 covers: broad kaon physics program (precision measurements, LFV/LNV decays, LLP searches) beam-dump physics (LLP searches) program + more exotic searches (neutrino tagging, ..)

• Data-taking periods 2016-18, 2021-26: $K^+ \to \pi^+ \nu \bar{\nu}$ analysis of 2016-22 data published

¹Observation of the $K^+ \to \pi^+ \nu \bar{\nu}$ decay and measurement of its branching ratio. NA62 Collaboration JHEP 02(2025)191 \odot

Introduction: Long-lived particles (LLPs)

Search for New Physics (NP) at intensity frontier with fixed-target experiments:

- Complementary to energy frontier (LHC) and indirect searches (precision measurements, LNV, etc.);
- Smaller masses (typically MeV-GeV scale) but much lower couplings accessible (large statistics);
- Dark Sector (SM-DM) portals typically probed:

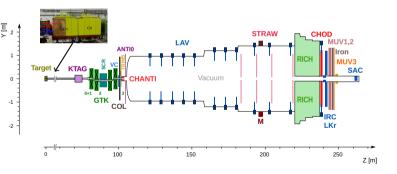
NP Particle	type	SM portal (dim ≤ 5)	PBC	decay channels ($m \lesssim 1 \text{GeV}$)	
$\overline{\operatorname{dark\ photon\ }(A'_{\mu})}$	vector	$-\epsilon/(2\cos\theta_W)F'_{\mu\nu}B^{\mu\nu}$	1-2	$\ell\ell$	$2\pi, 3\pi, 4\pi, 2K, 2K\pi$
$\mathbf{dark}\ \mathbf{Higgs}\ (S)$	scalar	$(\mu S + \lambda S^2)H^{\dagger}H$	4-5	$\ell\ell$	2π , 4π , $2K$
axion/ALP (a)	pseudoscalar	$(C_{VV}/\Lambda)gaV_{\mu\nu}\tilde{V}^{\mu\nu}$	9,11	$\gamma\gamma,oldsymbol{\ell\ell}$	$2\pi\gamma,3\pi,4\pi,2\pi\eta,2K\pi$
		$C_{ff}/(2\Lambda)\partial_{\mu}a\bar{f}\gamma^{\mu}\gamma^{5}f$	10		
$\mathbf{HNL}\ (N_I)$	fermion	$F_{\alpha I}(\bar{L}_{\alpha}H)N_{I}$	6-8	$\pi\ell, K\ell, \ell_1\ell_2\nu$	

Introduction: Long-lived particles (LLPs)

Search for New Physics (NP) at **intensity frontier** with fixed-target experiments:

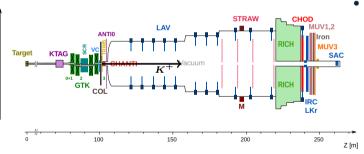
- Complementary to energy frontier (LHC) and indirect searches (precision measurements, LNV, etc.);
- $\bullet \ \, {\rm Smaller \ masses} \ ({\rm typically \ MeV\text{-}GeV \ scale}) \ \, {\rm but \ much \ lower \ couplings \ accessible} \ ({\rm large \ statistics}); \\$
- Dark Sector (SM-DM) portals typically probed:

NP Particle	type	SM portal (dim ≤ 5)	PBC	decay channels ($m \lesssim 1 \text{GeV}$)	
dark photon (A'_{μ})	vector	$-\epsilon/(2\cos\theta_W)F'_{\mu\nu}B^{\mu\nu}$	1-2	$\ell\ell$	$2\pi, 3\pi, 4\pi, 2K, 2K\pi$
dark Higgs (S)	scalar	$(\mu S + \lambda S^2)H^{\dagger}H$	4-5	ll	2π , 4π , $2K$
$\mathbf{axion}/\mathbf{ALP}\ (a)$	pseudoscalar	$(C_{VV}/\Lambda)gaV_{\mu\nu}\tilde{V}^{\mu\nu}$	9,11	$\gamma\gamma$, $\ell\ell$	$2\pi\gamma,3\pi,4\pi,2\pi\eta,2K\pi$
		$C_{ff}/(2\Lambda)\partial_{\mu}a\bar{f}\gamma^{\mu}\gamma^{5}f$	10		
$\mathbf{HNL}\ (N_I)$	fermion	$F_{lpha I}(ar{L}_lpha H)N_I$	6-8	$\pi\ell, K\ell, \ell_1\ell_2\nu$	


Two types of direct searches for NP particles at fixed-target experiments:

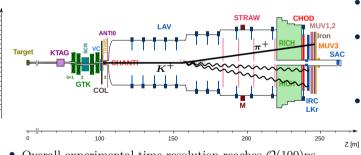
- NP particle production in SM particle decays reconstruction from both initial and final state particles
- 2 NP particle decay to SM particles reconstruction of original particle from the SM final states

NA62 experiment can do both in two modes of operation - • • kaon mode² and • beam-dump mode


²Following talk by E. Goudzovski.

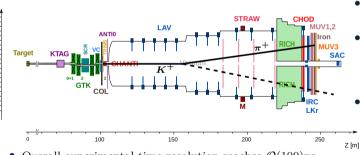
• 400 GeV/c primary p^+ beam impinges Be target, 75 GeV/c secondary beam selected ($\sim 6\%$ of K^+) using **TAX** collimators

The beam and detector of the NA62 experiment at CERN. NA62 Collaboration. 2017; HNST-12 P05025, \$1703-08501 \cappa_C


- 400 GeV/c primary p^+ beam impinges Be target, 75 GeV/c secondary beam selected ($\sim 6\%$ of K^+) using **TAX** collimators
- K^+ decay in flight in 60 m long fiducial volume (FV)³;

• K^+ tagged by **KTAG**; \vec{p}_K measured by **GTK**;

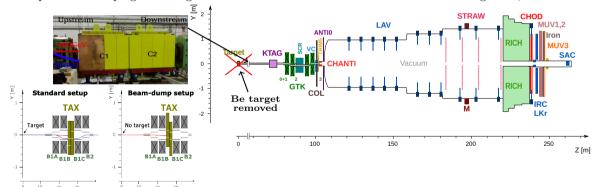
³The beam and detector of the NA62 experiment at CERN. NA62 Collaboration. 2017 HNST-12 P05025, \$170\\$08501\\ \cdot \c

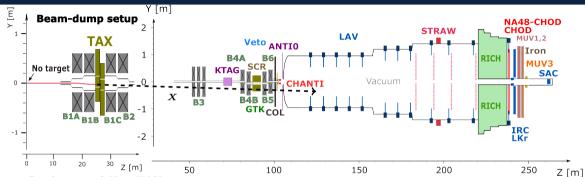

- 400 GeV/c primary p^+ beam impinges Be target, 75 GeV/c secondary beam selected ($\sim 6\%$ of K^+) using **TAX** collimators
- K^+ decay in flight in 60 m long fiducial volume (FV)³;

• Overall experimental time resolution reaches $\mathcal{O}(100)$ ps

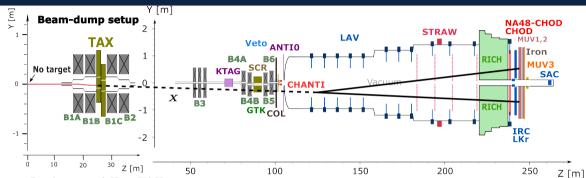
- K^+ tagged by **KTAG**; \vec{p}_K measured by **GTK**;
- Decay products' p from STRAW; time measured by CHOD;
 PID given by LKr, MUV12, RICH;
 + μ ID provided by MUV3;
- Photons can be vetoed by LKr
 + at large angles by 12 LAV stations
 + small angles by SAV(IRC/SAC);
- ³The beam and detector of the NA62 experiment at CERN. NA62 Collaboration. 2017: HNST=12 P05025, ₹1703€08501] ○

- 400 GeV/c primary p^+ beam impinges Be target, 75 GeV/c secondary beam selected ($\sim 6\%$ of K^+) using **TAX** collimators
- K^+ decay in flight in 60 m long fiducial volume (FV)³;

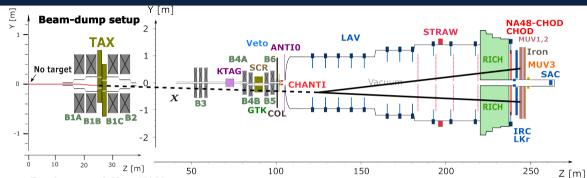

• Overall experimental time resolution reaches $\mathcal{O}(100)$ ps

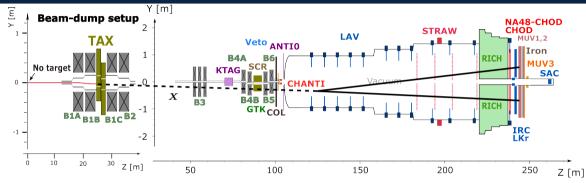

- K^+ tagged by **KTAG**; \vec{p}_K measured by **GTK**;
- Decay products' p from STRAW; time measured by CHOD;
 PID given by LKr, MUV12, RICH;
 + μ ID provided by MUV3;
- Photons can be vetoed by LKr

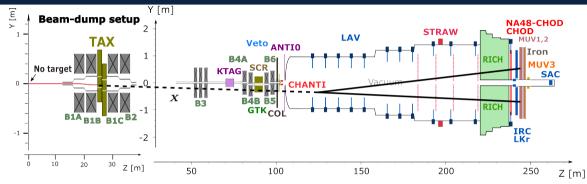
 + at large angles by 12 LAV stations
 + small angles by SAV(IRC/SAC);


³The beam and detector of the NA62 experiment at CERN. NA62 Collaboration. 2017 HNST P05025, 1703€08501 ○

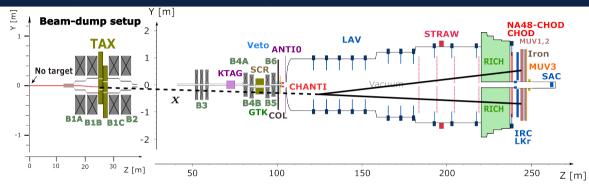
- Target removed and TAX closed, intensity more than twice the nominal kaon;
- Optimized sweeping from magnets between TAX and FV to reduce muon halo background;




- Production of X in TAX:
 - p-Bremsstrahlung $pN \to X + ...$; ALP Primakoff; mixing with $V = \{\rho, \omega, \phi\}, P = \{\pi^0, \eta, \eta'\}$
 - secondary meson decays: $B \to KX$; $P \to A'\gamma$ and $V \to A'P$; $D(B) \to K(D)(\pi)\ell X$


- Production of X in TAX:
 - p-Bremsstrahlung $pN \to X + ...$; ALP Primakoff; mixing with $V = \{\rho, \omega, \phi\}, P = \{\pi^0, \eta, \eta'\}$
 - secondary meson decays: $B \to KX$; $P \to A'\gamma$ and $V \to A'P$; $D(B) \to K(D)(\pi)\ell X$
- Decay of X in the FV into observable final states;

- Production of X in TAX:
 - p-Bremsstrahlung $pN \to X + ...$; ALP Primakoff; mixing with $V = \{\rho, \omega, \phi\}, P = \{\pi^0, \eta, \eta'\}$
 - secondary meson decays: $B \to KX$; $P \to A'\gamma$ and $V \to A'P$; $D(B) \to K(D)(\pi)\ell X$
- Decay of X in the FV into observable final states;
- two trigger lines for charged particles: ≥ 1 hits in CHOD/20, > 1 in-time hit in CHOD; + neutral calorimeter-based trigger line


• $N_{\rm POT} = (1.4 \pm 0.3) \times 10^{17}$ protons on target (POT) collected in 2021; on tape: $N_{\rm POT} > 9 \times 10^{17}$

- $N_{\rm POT}=(1.4\pm0.3)\times10^{17}$ protons on target (POT) collected in 2021; on tape: $N_{\rm POT}>9\times10^{17}$
- 2021 data NP searches with $\ell\ell$ and hadronic $\pi^+\pi^-(\gamma,\pi^0,\eta,2\pi^0), K^+K^-(\pi^0)$ final states **published**⁴

Jan Jerhot (MPP)

⁴NA62 Collaboration JHEP 09(2023)035 [2303.08666]; PRL 133(2024)11 [2312.12055]; EPJC 85(2025)5 [2502.04241] → ○ ○

- $N_{\rm POT}=(1.4\pm0.3)\times10^{17}$ protons on target (POT) collected in 2021; on tape: $N_{\rm POT}>9\times10^{17}$
- 2021 data NP searches with $\ell\ell$ and hadronic $\pi^+\pi^-(\gamma,\pi^0,\eta,2\pi^0), K^+K^-(\pi^0)$ final states **published**⁴
- Di-lepton, hadronic, semi-leptonic and di-photon analyses with **full sample ongoing**.

⁴NA62 Collaboration JHEP 09(2023)035 [2303.08666]; PRL 133(2024)11 [2312.12055]; EPJC 85(2025)5 [2502.04241]

- 1 selecting two oppositely charged tracks +
 - + **PID:** MUV3, LKr(+MUV1,2): E/p, BDT
 - \Rightarrow reconstructing their \vec{p} and m;

- selecting two oppositely charged tracks +
 - + PID: MUV3, LKr(+MUV1,2): E/p, BDT
 - \Rightarrow reconstructing their \vec{p} and m;
- 2 tracks forming a vertex in FV (+ search for add. γ)
 - \Rightarrow reconstructing LLP \vec{p}_X and m_X ;

- selecting two oppositely charged tracks +
 - + **PID:** MUV3, LKr(+MUV1,2): E/p, BDT
 - \Rightarrow reconstructing their \vec{p} and m;
- 2 tracks forming a vertex in FV (+ search for add. γ)
 - \Rightarrow reconstructing LLP \vec{p}_X and m_X ;
- search for primary production vertex close to TAX (where you expect LLP to be produced);

- selecting two oppositely charged tracks +
 - + PID: MUV3, LKr(+MUV1,2): E/p, BDT
 - \Rightarrow reconstructing their \vec{p} and m;
- 2 tracks forming a vertex in FV (+ search for add. γ)
 - \Rightarrow reconstructing LLP \vec{p}_X and m_X ;
- search for primary production vertex close to TAX (where you expect LLP to be produced);
- blind analysis (signal and control regions defined around primary vertex location kept masked).

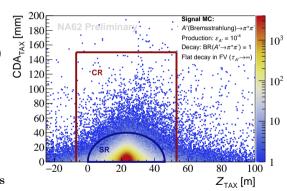
Search strategy:

- selecting two oppositely charged tracks +
 - + PID: MUV3, LKr(+MUV1,2): E/p, BDT
 - \Rightarrow reconstructing their \vec{p} and m;
- 2 tracks forming a vertex in FV (+ search for add. γ)
 - \Rightarrow reconstructing LLP \vec{p}_X and m_X ;
- search for primary production vertex close to TAX (where you expect LLP to be produced);
- blind analysis (signal and control regions defined around primary vertex location kept masked).

Vetoes:

- μ^{\pm} : no in-time activity in LAV
- e^{\pm} : + no geometrically associated ANTIO signal
- hadrons: combined SAV, LAV, ANTIO vetoes

Search strategy:


- 1 selecting two oppositely charged tracks +
 - + **PID:** MUV3, LKr(+MUV1,2): E/p, BDT
 - \Rightarrow reconstructing their \vec{p} and m:
- 2 tracks forming a vertex in FV (+ search for add. γ)
 - \Rightarrow reconstructing LLP \vec{p}_X and m_X ;
- **3** search for primary production vertex close to TAX (where you expect LLP to be produced):
- 4 blind analysis (signal and control regions defined around primary vertex location kept masked).

Vetoes:

- μ^{\pm} : no in-time activity in LAV
- e^{\pm} : + no geometrically associated ANTI0 signal
- hadrons: combined SAV, LAV, ANTIO vetoes

Signal and control regions (SR, CR):

- extrapolation of \vec{p}_X from vertex to TAX: definition of SR and CR in terms of primary vertex location
 - SR: ellipse centered at $\{Z_{\text{TAX}}, \text{CDA}_{\text{TAX}}\} = \{23\,\text{m}, 0\,\text{mm}\}\$ with semi-axes of 23 m and 40 mm
 - CR: box CDA_{TAX} $< 150 \,\mathrm{mm}$ and $-7 \,\mathrm{m} < Z_{\mathrm{TAX}} < 53 \,\mathrm{m}$

Search for LLP decays in 2021 beam-dump sample (acceptance)

In model-independent case $(C^i = C^i_{ref}, BR^f = 1)$: $N^i_{exp}(m_X, \Gamma_X) = N_{POT} \times \chi^i_{nn \to X}(C^i_{ref}) \times P^i_{rd} \times A^{if}_{arc}$

- $\chi_{pp \to X}(C_{\text{ref}})$: LLP prod. probability for ref. coupling P_{rd} : probability to reach NA62 FV and decay therein
- A_{acc}: signal selection and trigger acceptance

Search for LLP decays in 2021 beam-dump sample (acceptance)

In model-independent case $(C^i = C^i_{ref}, BR^f = 1)$: $N^{if}_{exp}(m_X, \Gamma_X) = N_{POT} \times \chi^i_{pp \to X}(C^i_{ref}) \times P^i_{rd} \times A^{if}_{acc}$

- $\chi_{pp \to X}(C_{\text{ref}})$: LLP prod. probability for ref. coupling P_{rd} : probability to reach NA62 FV and decay therein
- $A_{\rm acc}$: signal selection and trigger acceptance

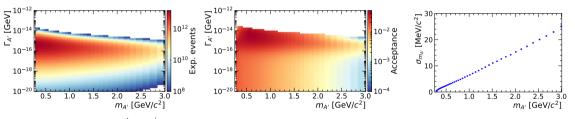


Figure: Left: expected $A' \to \pi^+\pi^-$ yield after full selection, assuming $\varepsilon = 1$ and BR = 1. Center: acceptance after full selection for LLPs that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

- Distributions above obtained for all 61 combinations of production and decay channels
- All available on HepData: https://doi.org/10.17182/hepdata.156981.v1

Combinatorial:

 Background from random superposition of two uncorrelated upstream particles;

Prompt:

• Background from secondaries of μ interactions with the traversed material (photo-production);

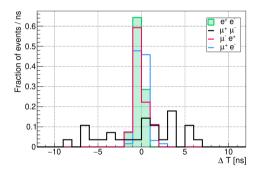


Figure: $X \to \ell^+ \ell^-$ background before LAV veto (SR and CR masked).

Combinatorial:

- Background from random superposition of two uncorrelated upstream particles;
- Dominating for $\mu^+\mu^ (N_{\text{exp}}^{ee(\pi\pi)} < 10^{-3(5)});$
- Simulation based on data single ℓ/π artificially overlaid to emulate a random superposition.

Prompt:

- Background from secondaries of μ interactions with the traversed material (photo-production);
- Dominating for e^+e^- ($N_{\rm exp}^{ee} \sim 10^{-2}$) some contribution to hadrons ($N_{\rm exp}^{\pi\pi} < 10^{-4}$).
- Simulation based on backwards MC using data single μ + unfolding in p and R.

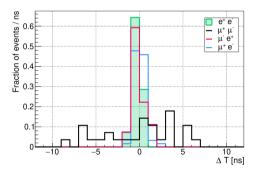


Figure: $X \to \ell^+ \ell^-$ background before LAV veto (SR and CR masked).

Kaon decays:

- Background from upstream kaons entering the FV via non-instrumented ANTIO hole;
- Dominating for hadrons $(N_{\rm exp}^{\pi\pi} \sim 10^{-2})$, negligible for leptons;
- Simulation based on single K⁺ selected in data and forced to decay in the FV.

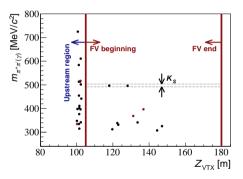


Figure: $\pi^+\pi^-(\gamma)$ events in $Z_{\rm VTX}$ – invariant mass plane after inverting ANTI0 veto. Solid lines indicate the FV. Dashed lines indicate the K_S 3σ mass window.

Kaon decays:

- Background from upstream kaons entering the FV via non-instrumented ANTI0 hole;
- Dominating for hadrons $(N_{\rm exp}^{\pi\pi} \sim 10^{-2})$, negligible for leptons;
- Simulation based on single K⁺ selected in data and forced to decay in the FV.

Neutrino-induced background:

- Interactions of ν_{μ} from TAX in detector material;
- CC and NC interactions in passive material simulated while enhancing the interaction cross section;
- Negligible contribution found for all final states.

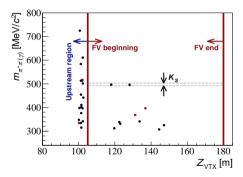


Figure: $\pi^+\pi^-(\gamma)$ events in $Z_{\rm VTX}$ – invariant mass plane after inverting ANTI0 veto. Solid lines indicate the FV. Dashed lines indicate the K_S 3σ mass window.

Table: Summary of total expected number of background events at 68% CL for all studied decay channels in CR and SR after full selection.

Channel	$N_{ m exp,CR} \pm \delta N_{ m exp,CR}$	$N_{ m exp,SR} \pm \delta N_{ m exp,SR}$
$\pi^+\pi^-$	0.013 ± 0.007	0.007 ± 0.005
$\pi^+\pi^-\gamma$	0.031 ± 0.016	0.007 ± 0.004
$\pi^{+}\pi^{-}\pi^{0}$	$(1.3^{+4.4}_{-1.0}) \times 10^{-7}$	$(1.2^{+4.3}_{-1.0}) \times 10^{-7}$
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$(1.6^{+7.6}_{-1.4}) \times 10^{-8}$	$(1.6^{+7.4}_{-1.4}) \times 10^{-8}$
$\pi^+\pi^-\eta$	$(7.3^{+27.0}_{-6.1}) \times 10^{-8}$	$(7.0^{+26.2}_{-5.8}) \times 10^{-8}$
K^+K^-	$(4.7^{+15.7}_{-3.9}) \times 10^{-7}$	$(4.6^{+15.2}_{-3.8}) \times 10^{-7}$
$K^+K^-\pi^0$	$(1.6^{+3.2}_{-1.2}) \times 10^{-9}$	$(1.5^{+3.1}_{-1.2}) \times 10^{-9}$
$\mu^+\mu^-$	0.17 ± 0.02	0.016 ± 0.002
e^+e^-	$0.0097^{+0.049}_{-0.009}$	$0.0094^{+0.049}_{-0.009}$

Background-free hypothesis **not only** at $N_{POT} = 1.4 \times 10^{17}$ but also for $N_{POT} = 10^{18}$ and beyond

• 0 events observed in all CRs;

- 0 events observed in all CRs;
- 1 event observed in $\mu^+\mu^-$ SR (2.4 σ global significance); 0 events observed in e^+e^- and hadronic SRs;

- 0 events observed in all CRs;
- 1 event observed in $\mu^+\mu^-$ SR (2.4 σ global significance); 0 events observed in e^+e^- and hadronic SRs;
- Model-dependent interpretation:⁵ $N_{\text{exp}}(m_X, C_X) = \sum_{if} \text{BR}^f(m_X, C_X) \times (C^i/C_{\text{ref}}^i)^2 \times N_{\text{exp}}^{if}(m_X, \Gamma_X = \Gamma_X(m_X, C_X))$

⁵ALPINIST: Axion-Like Particles In Numerous Interactions Simulated and Tabulated. JHEP 67 (2022) 094; [2201.05170] ©

- 0 events observed in all CRs:
- 1 event observed in $\mu^+\mu^-$ SR (2.4 σ global significance); 0 events observed in e^+e^- and hadronic SRs;
- Model-dependent interpretation:⁵ " $N_{\text{exp}}(m_X, C_X) = \sum_{if} \text{BR}^f(m_X, C_X) \times (C^i/C_{\text{ref}}^i)^2 \times N_{\text{exp}}^{if}(m_X, \Gamma_X = \Gamma_X(m_X, C_X))$
- Observed 90% CL contours for different models obtained using the CL_s method, combining the result for **hadronic** and **di-lepton final states**.

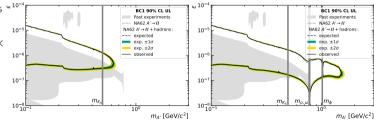


Figure: The observed 90% CL exclusion contours in BC1 (dark photon) benchmark together with the expected $\pm 1\sigma$ and $\pm 2\sigma$ bands (theory uncertainty not included). Left: Bremsstrahlung production without resonant enhancement. Right: Bremsstrahlung production with resonant enhancement.

 $^{^5}$ ALPINIST: Axion-Like Particles In Numerous Interactions Simulated and Tabulated. JHEP 07 (2022) 094; [2201.05170] \odot

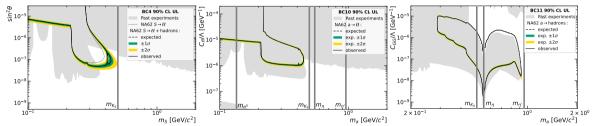


Figure: The observed 90% CL exclusion contours in BC4 (left), BC10 (center) and BC11 (right) benchmarks together with the expected $\pm 1\sigma$ and $\pm 2\sigma$ bands (theory uncertainty not included).

NA62 projected sensitivity for the full BD sample

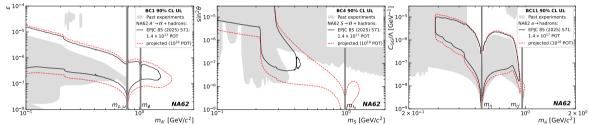


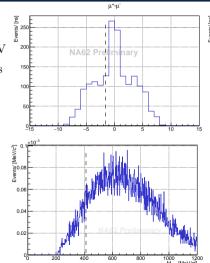
Figure: The observed 90% CL exclusion contours in BC4 (left), BC10 (center) and BC11 (right) benchmarks with 2021 data set together with the expected sensitivity for the full data sample.

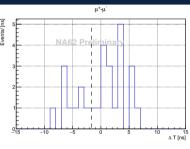
Summary

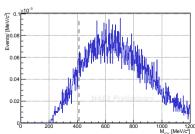
- NA62 is a multipurpose experiment allowing search for LLPs;
- Blind analyses searching for LLP decays $X \to \ell^+\ell^-$ and $X \to$ hadrons have been performed on the beam-dump data collected in 2021;
- New regions of LLP parametric spaces were probed with no NP signal observed;
- Much more data in beam-dump already collected (> 9×10^{17} POT);
- Data analysis of the larger sample in progress with no background limitation foreseen for all final states;
- New searches for LLP decay channels including semi-leptonic or di-gamma final states.
- Many more LLP searches in the kaon mode (next talk)

Summary

- NA62 is a multipurpose experiment allowing search for LLPs;
- Blind analyses searching for LLP decays $X \to \ell^+\ell^-$ and $X \to$ hadrons have been performed on the beam-dump data collected in 2021;
- New regions of LLP parametric spaces were probed with no NP signal observed;
- Much more data in beam-dump already collected (> 9×10^{17} POT);
- Data analysis of the larger sample in progress with no background limitation foreseen for all final states;
- New searches for LLP decay channels including semi-leptonic or di-gamma final states.
- Many more LLP searches in the kaon mode (next talk)

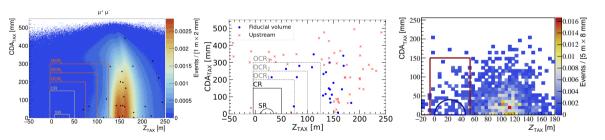

Thank you for your attention!




Backup slides

Search for $A' \to \mu\mu$ - details on observed event

- invariant mass: $m_{\mu\mu} = 411 \text{ MeV}$
- time difference: $\Delta T = -1.69 \text{ ns}$
- momenta:
 - $P(\mu^+) = 99.5 \text{ GeV}/c$
 - $P(\mu^{-}) = 39.6 \text{ GeV}/c$
- $z_{\rm EV} = 157.8 \, {\rm m}$
- $CDA_{FV} = 382 \text{ mm}$
- $z_{\text{TAX}} = 17 \text{ mm}$
- $E/p(\mu^+) = 0.008$
- $E/p(\mu^{-}) = 0.018$



Distributions of the simulated background events in the $(Z_{\rm VTX}, {\rm CDA}_{\rm VTX})$ plane for $\mu^+\mu^-$, e^+e^- and $\pi^+\pi^-(\gamma)$ final states:

Search for LLP decays in beam-dump mode (PID)

- μ^{\pm} : $E_{LKr}/p \sim 0 + MUV3$;
- e^{\pm} : $E_{LKr}/p \sim 1 + !MUV3$;
- h^{\pm} (π^{\pm} and K^{\pm}):
 - LKR+MUV12 BDT classifier $p_{\pi} > 80\% + !MUV3$:
 - K^{\pm} : h^{\pm} with K^{+} selected by RICH (else π^{\pm});
 - search neutral LKr clusters and reconstruction of γ , π^0 , η based on opening angle wrt decay vertex;