

ProtoDUNE-SP Hennessy, EPJ, 2019

Millicharged Particles

Yu-Dai Tsai
University of California, Irvine/Los Alamos
Light Dark World (LDW) 2025

Millicharged Particles

Renormalizable "portal" interactions:

$$\mathcal{L} \supset \left\{ egin{array}{ll} -rac{\epsilon}{2\cos heta_W} B_{\mu
u} F'^{\mu
u} \,, & ext{vector portal} \ (\mu\phi + \lambda\phi^2) H^\dagger H \,, & ext{Higgs portal} \ y_n L H N \,, & ext{neutrino portal} \end{array}
ight.$$

• Millicharge particle (mCP): $U(1)_Y$ hypercharge portal

$$\mathcal{L}_{\text{MCP}} = i\bar{\chi}(\partial - i\epsilon' e B + M_{\text{MCP}})\chi$$

- Benchmark Models for Experiments: e.g., CERN SPS & ProtoDUNE+
- Growing Theoretical Interest & Developments

Outline

Theory Motivations &
 Probes of Cosmology

• Experimental Searches

Theoretical Motivations of Millicharged Particles

Millicharged particle (mCP) is a particle χ with {mass, electric charge} = $\{m_{\chi}, \epsilon e\}$

$$Q_\chi$$
 is the mCP electric charge, $\ \epsilon = Q_\chi/e$

- Long-standing questions: Is electric charge quantized? To what unit? Why?
 Novel connections to monopoles?
- 2. A generic prediction of string theory, Wen, Witten, NPB 1985
- 3. A product of Grand Unification Theories (GUTs), Holdom, PLB 1986
- 4. Finding mCP can be a strong probe of early-universe reheating cosmology Gan, Tsai, 2308.07951
- "Theory Review of Millicharged & Fractionally Charged Particles"
 Planned review for Progress in Particle and Nuclear Physics (PPNP)

Two Kinds of Millicharged Particles (mCP)

"Pure" mCP

- Theoretical implication of mCP with a small rational or irrational charge, NO dark photon needed
- Prediction of string theories
- Indirect test of GUTs models

Effective "Kinetic-Mixing" mCP

Predicted by GUTs.

Choose a proper basis: massless dark photon B' decouple from SM

$$\mathcal{L}_{\text{MCP}} = i\bar{\chi}(\partial \!\!\!/ - i\epsilon' e \!\!\!/ \!\!\!/ + M_{\text{MCP}})\chi$$

My goal: find and differentiate these mCPs!

Probing Inflation & Reheating Cosmology

We know very little about the reheating phase; washed out in later stage

 $T_{
m rh}$ is the reheating temperature; BBN is the big bang nucleosynthesis

$$T_{
m GUT}(\sim 10^{16}\,{
m GeV})\gtrsim T_{
m rh}\gtrsim T_{
m BBN}(\sim {
m MeV})$$

Cosmic Millicharge Background (CmB)

"Pure" mCP

- mCP with a small (irrational) charge
 & no dark photon
- Generic prediction of string theory
- Indirect test of GUTs models
- Indirect test of string compactifications

$$\mathcal{L}_{\text{MCP}} = i\bar{\chi}(\partial - i\epsilon' e \mathcal{B} + M_{\text{MCP}})\chi$$

Irreducible Production during Reheating

Inflaton Decays

Thermal Production & Annihilation

mCP can be easily "overproduced", to more than that of the observed amount of dark matter

Cosmic Millicharge: Overproduction During Reheating

Irreducible Production during Reheating

mCP can be easily "overproduced", to more than that of the observed amount of dark matter (DM)

$$\Omega_{\rm DM}h^2 \sim 0.12$$

Currently measured DM abundance

$$\Omega \equiv rac{
ho}{
ho_c}$$
 :

Density is normalized by ρ_c , the critical density for a flat Universe; h = 0.674

$$ho_{
m c}=rac{3H^2}{8\pi G}$$

mCP Parameters that Lead to Overproduction

$$\dot{n}_{\chi} + 3Hn_{\chi} \simeq \mathcal{C}_n(T) \left(1 - \frac{n_{\chi}^2}{n_{\chi, \mathrm{eq}}^2} \right), \quad \mathcal{C}_n(T) = 2n_Z \langle \Gamma \rangle_{Z \to \chi \bar{\chi}} + 2n_f n_{\bar{f}} \langle \sigma v \rangle_{f\bar{f} \to \chi \bar{\chi}}$$

Millicharge Search as a Probe for Reheating Temperature

Overproduction Bounds for "Pure" mCP

"Pure" CmB from Irreducible Production

 $\epsilon = Q_x/e$ Overproduction Bounds for "Pure" mCP

- Minimal reheating temperature larger than T_{BBN} (e.g., Hasegawa+, JCAP 19; Hannestad, PRD 04)
- Our purple bound is covering the SN1987A constraint (gray region from Chang+, JHEP 18)

Kinetic-Mixing Cosmic Millicharge Background (CmB)

Kinetic-mixing mCP

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} B'_{\mu\nu} B'^{\mu\nu} - \frac{\kappa}{2} B'_{\mu\nu} B^{\mu\nu} + i\bar{\chi} (\partial \!\!\!/ + ie' B' \!\!\!/ + iM_{MCP}) \chi$$

Choose a proper basis: massless dark photon A' decouple from SM

$$q_\chi = rac{\epsilon g_d}{e}$$

$$\mathcal{L}_{\text{MCP}} = i\bar{\chi}(\partial \!\!\!/ - i\epsilon' e \!\!\!/ \!\!\!/ + M_{\text{MCP}})\chi$$

Kinetic-mixing mCP

massless dark photon A' will affect N_{eff} See Vogel, Redondo, JCAP 14, Adshead, Ralegankar, Shelton, JCAP 22

Millicharge Search as a Probe for Reheating Temperature

 $\Delta N_{\rm eff}$ Constraints for mCP with Dark Photon

Testing Reheat Temperatures in Both Cases

Another Key Objective:

Differentiate Two Types of MCPs

- Theoretically, is there a limit on how small g_d can be, for a given q_{χ} ?
- Combined with cosmology, we may distinguish two mCPs

$$q_\chi = rac{\epsilon g_a}{e}$$

"Distinguishability" Conditions

Gan, **Tsai**, JHEP (2025), <u>2308.07951</u>

• Turning down thermalization between $\chi - \mathsf{A}'$: $g_d \lesssim (16\pi^2 m_\chi/\mathcal{F} m_{\rm pl})^{1/4}$

- Requirement for kinetic mixing: $\epsilon < 1 \Rightarrow g_d > eq_{\chi}$, $q_{\chi} = \frac{\epsilon g_d}{e}$ Burgess et~al, JCAP 08
- Considering these two inequalities for gd, we can roughly determine that:

$$q_\chi \gtrsim rac{1}{lpha_{
m em}^{1/2}} \left(rac{m_\chi}{\mathcal{F} m_{
m pl}}
ight)^{1/4}, \qquad \mathcal{F} pprox rac{375}{16\pi^3 e^{5/2} g_*^{1/2}}.$$

One CANNOT de-theramlize χ — A' interaction rate to mimic "pure" mCP!

Regions of Interests

- Orange Star: favoring "pure" mCP
- Yellow Star: testing reheat temperatures
- Green Star:
 - 1) testing reheat temperatures with CMB-S4
 - 2) currently favoring kinetic-mixing mCP
 - **Purple Star:** favoring kinetic-mixing mCP can be reached by direct-detection exps.

Our study can be extended to other BSM searches, mCP is one of the cleanest examples

Millicharged Dark Matter (mDM)?

Green: Liu, Outmezguine, Redigolo, Volansky, PRD (2019), Kling, Kuo, Trojanowski, Tsai *NPB* (2023)

The depletion of local density:

- McDermott, Yu & Zurek, PRD (2011)
- Supernova shock waves expel the charged constituents from the disk
- Galactic magnetic fields prevent them from re-entering

- 21 cm CMB absorption spectrum
- Many (upcoming) measurements!
 Voytek et al, APJL (2014),
 Singh et al, arXiv: <u>1710.01101</u>

SARAS-3 in North Karnataka, India

Millicharged Dark Matter (mDM)

Also claims & considerations for overdensity

- Atmospheric & Earth Stopping Accumulates Slow Moving mDM Pospelov, Ramani, PRD (2021)
- Quantum sensors (Iron Trap) can be applied to study them Budker, Graham, Ramani, Schmidt-Kaler, Smorra, Ulmer et al., PRX (2022)

- 21 cm CMB absorption spectrum
- Many (upcoming) measurements!
 Voytek et al, APJL (2014),
 Singh et al, arXiv: 1710.01101

SARAS-3 in North Karnataka, India

Outline

Theory Motivations &
 Probes of Cosmology

Experimental Searches

Accelerator: Intensity & Energy Frontiers

Fixed-Target / Collider Productions

1. Scattering Study

DUNE Detectors

2. Dedicated Detector

- We conducted the first millicharge study at neutrino experiments (PRL 19)
- Many experiments (ArgoNeuT, SENSEI) followed up accelerator mCP study.
- Belle and future experiments like FCC: interesting sensitivities & constraints

Two Search Methods: Scattering & Scintillation

Electron Scattering

~ energy exchange set by detector threshold (> MeV)

e.g., neutrino detector Credit: MicroBooNE Col.

 $\sigma_{e\chi} \simeq 2.6 \times 10^{-25} \text{cm}^2 \times \epsilon^2 \times \frac{1 \text{ MeV}}{E_e^{(\text{min})} - m_e}.$

Expressed in recoil energy threshold, $E_e^{(min)}$

Magill, Plestid, Pospelov, **Tsai**, *PRL* 19, <u>1806.03310</u> Harnik, Liu, Palamara, *JHEP* 19, 1902.03246

• **Dedicated Scintillation Searches** for Millicharge Particles

~ eV-level energy exchange

Energy deposition

milliQan design, 1607.04669 (MilliQan Collaboration)

FerMINI: Kelly, **Tsai**, *PRD* 19, <u>1812.03998</u>

FORMOSA: Foroughi-Abari, Kling, Tsai, PRD 21, 2010.07941

LANSCE-mQ: **Tsai** et al., <u>2407.07142</u>

ProtoDUNE & CERN SPS

Energy: 400 GeV

- **POT:** \sim 3.5×1018 POT/year, consider sensitivity for 5 years.
- The target is \sim 15 m underground, and there are \sim 500 m of soil between the beam dump and EHN1.

Coloma, L'opez-Pav'on, Molina-Bueno, Urrea, *JHEP* (2024) 2304.06765

ProtoDUNE & CERN SPS

 Since the setup is background-limited, the dashed black line indicates the ultimate sensitivity achievable if backgrounds can be reduced

Coloma, L'opez-Pav'on, Molina-Bueno, Urrea, *JHEP* (2024) 2304.06765

Dedicated Scintillation-Based Millicharged Experiments

1. FORMOSA @CERN

- Proposed it & conducted flux calculations with PhD Student Abari, Kling, Tsai, PRD 21
- Demonstrator installed & taking data
- Featured on P5 Report

2. LANSCE-mQ @LANL

- A tiny "pathfinder" has taken data
- Tsai et al., <u>2407.07142</u>
- Received \$165k funding for 2025

3. LongQuest-mQ @Fermilab

- Study mCP & Long-Lived Particles
- Tsai, et al., PRL 21

Samantha Kelly (PhD Student) at LANSCE@LANL

LANSCE-mQ at LANL

Updates:

- MicroBooNE completing
 dedicated millicharge analysis
 (Arellano, Evans, ...)
- For dedicated searches:
- 1. LANL LDRD \$165k funding for '25
- 2. Featured on P5 report
- Demonstrators are built and full detectors under way

Students:

Undergrads: Domingo (UCI), Bailloeul

(UCD), Hwang (BU)

PhDs: Li (UCR), Kelly (UCD)

New Dedicated Millicharged Particle Search at Energy Frontier

- Long scintillator bars to detector small ionization from mCP
- **FORMOSA:** the mCP flux increases by $\sim 10^3$ to 10^4 from the **transverse** to the **forward** region
- CMS has fractionally-charged particle analysis at <u>7 TeV</u> & <u>13 TeV</u>
 - Cosmic-ray production & Super-K detection (*PRD* 20)

Proton Bremsstrahlung Production

Foroughi-Abari (2023)

Kling, Reimitz, Ritz, <u>2509.09437</u>

Summary

Theory & Cosmology: Motivations of millicharged particles (mCPs) from string theory, GUTs, and reheating cosmology

Experimental Searches: Multiple approaches—scattering, scintillation, and dedicated detectors (FORMOSA, LANSCE-mQ, LongQuest-mQ)—are presented, with updates on current projects and sensitivities at CERN, Fermilab, and LANL.

Outlook: More dedicated production studies, more upcoming experimental searches, and extend the cosmology considerations to other dark-sector particles

Kinetic-Mixing CmB Cosmology

$$q_{\chi} \sim 10^{-7} \left(\frac{m_{\chi}}{1\,\mathrm{GeV}}\right)^{1/2} \left(\frac{\Delta N_{\mathrm{eff}}}{0.3}\right)^{1/2}. \ m_{\chi} \leq \mathrm{T_{rh}}$$
 $q_{\chi} \approx \exp\left(\frac{m_{\chi}}{T_{\mathrm{rh}}}\right). \ m_{\chi} > \mathrm{T_{rh}}$

Considering higher reheating temperatures for region to the right of the red curve:

$$\Delta N_{\rm eff} \lesssim g_{A'} \, \frac{4}{7} \left(\frac{g_{*,S}(T \ll T_{\rm QCD})}{g_{*,S}(T \gg T_{\rm QCD})} \right)^{4/3} \simeq 0.1,$$

See Gan, Tsai, 2308.07951 for detailed discussions

Current: $\Delta N_{\rm eff} \leq (0.3)_{\rm Planck}$

Future: $\Delta N_{\rm eff} \leq (0.06)_{\rm CMB-S4}$

Outline

Probing Reheating Cosmology

• Experimental Searches

Related Studies

Neutrino-Photon (Quantum) Interactions

Neutrino Electromagnetic Properties:

$$\langle \nu_f(p_f) | j^{\mu}_{\nu, \text{EM}} | \nu_i(p_i) \rangle = \overline{u}_f(p_f) \Lambda^{\mu}_{fi}(q) u_i(p_i)$$

$$\Lambda^{\mu}_{fi}(q)=\gamma^{\mu}\left(Q_{fi}-rac{q^2}{6}\langle r_{fi}^2
angle^{ ext{eff}}
ight)-i\sigma^{\mu
u}q_{
u}\mu^{ ext{eff}}_{fi},$$
 charge charge radius dipole moment

Giunti et al., Rev. Mod. Phys 14, Abraham, Foroughi-Abari, Kling, Tsai, PRD 25

Summary: Important Explorations in Particle Physics

Coupling Strength

A comprehensive effort is crucial in studying the "Elusive Universe" What particle physics can do for cosmology?