Light DM Detection in v Experiments Boosted Dark Matter (BDM)

Jong-Chul Park

Department of Physics Institute for Sciences of the Universe

Light Dark World 2025 September 18 (2025)

Outline

- * Dark Matter? Dark Sector?
- * Boosted Dark Matter (BDM) & Its Searches
- ***** Issues in BDM Searches
- ***** Exciting Prospects for BDM Searches
- **Summary**

Dark Matter? Dark Sector?

Message from Cosmology: Dark Matter (DM)

Dark Sector: Dark Particles & Portals

SM sector

<u>Multiple</u> stable & unstable <u>particles</u>, Various <u>interactions</u>

Portals: mediators

- ✓ Vector portal (kinetic mixing): $\frac{\sin \epsilon}{2} B_{\mu\nu} X^{\mu\nu}$
- ✓ Scalar (Higgs) portal: $\lambda_{H\phi}|H|^2|\phi|^2$
- ✓ Fermion (neutrino) portal: $\lambda_{\chi}HL\chi$
- ✓ Pseudo-scalar (axion) portal: $\frac{1}{f_{a\gamma/ag}} aF_{\mu\nu} \tilde{F}^{\mu\nu}$ $\frac{1}{f_{af}} \partial_{\mu} a(\bar{\psi}\gamma^{\mu}\gamma^{5}\psi)$
- ✓ Dilaton portal: $\frac{\sigma}{f}(M_V^2V_{\mu}V^{\mu} + \cdots + V_{\mu\nu}V^{\mu\nu} + \cdots)$
- ✓ Gauged SM global #: B-L, L_{μ} - L_{τ} , ...
- ✓ Dark axion portal: $G_{\alpha\gamma\gamma}$, $\alpha F_{\mu\nu}\tilde{X}^{\mu\nu}$ [Kaneta, Lee, Yun (2016)]
- ✓ Double portal: combination of portals [Belanger, Goudelis, JCP (2013)]
- ✓ ???

Portal

Dark sector

 $\begin{pmatrix} \chi_1, \chi_2, \chi_3, \dots \\ \phi_1, \phi_2, \phi_3, \dots \\ \chi_1, \chi_2, \chi_3, \dots \end{pmatrix}$

* Dark sector particles

<u>Multiple</u> stable & unstable <u>particles</u>, Various <u>interactions</u>?

- ✓ DM spin: fermion, scalar, vector
- ✓ DM species: single-/two-/multi-component
- ✓ DM mass: light, heavy, light & heavy
- ✓ DM interaction: flavor-conserving (elastic), flavor-changing (inelastic)

Various Ideas for DM

Various mechanisms for DM relic determination:

- ✓ Assisted freeze-out [Belanger & JCP, 1112.4491]
- ✓ Asymmetric dark matter [0901.4117]
- ✓ Cannibal dark matter [1602.04219; 1607.03108]
- ✓ Co-annihilation [PRD43 (1991) 3191]
- ✓ Co-decaying dark matter [Bandyopadhyay, Chun, **JCP**, 1105.1652; 1607.03110]
- ✓ Continuum dark matter [2105.07035]
- ✓ Co-scattering mechanism [1705.08450]
- ✓ Dynamical dark matter [1106.4546]
- ✓ ELastically DEcoupling Relic (ELDER) [1512.04545]
- ✓ Freeze-in [0911.1120]
- ✓ Forbidden channels [PRD43 (1991) 3191; 1505.07107]
- ✓ Inverse decay dark matter [2111.14857]
- ✓ Pandemic dark matter [2103.16572]
- ✓ Semi-annihilation [0811.0172; 1003.5912]
- ✓ Strongly Interacting Massive Particle (SIMP) [1402.5143; 1702.07860]

Self-interaction Self-interaction can be strong Maybe unstable can be strong can be strong DM₁ DM₂ can be very weak SM $\chi/\psi/$ $2\leftrightarrow 2$, $3\leftrightarrow 2$

√ ..

Current Status of DM Searches

Particle Searches: Passive → **Active**

Passive searches

Active searches

Talks @ This morning

Talks @ Tuesday & Wednesday morning

Neutrino vs. Dark Matter

	Neutrino	Dark Matter
Population	Many	Probably Many (depending on $m_{\rm DM}$)
Interaction	Weak	Weakly or Feebly?
Relativistic	Mostly	Mostly Not
Active Production	Possible	Maybe
Approaches	Large Vol. (w/ high E _{th}) Beam-produced	Lager is better, but low <i>E</i> _{th} Beam-produced
Experiments	SK/HK, DUNE, IceCube, T2K, DUNE, SHiP, FASER,	XENON, LZ, ANAIS, T2K, DUNE, SHiP, FASER,

Neutrino vs. Dark Matter

	Neutrino	Dark Matter
Population	Many	Probably Many (depending on $m_{\rm DM}$)
Interaction	Weak	Weakly or Feebly?
Relativistic	Mostly	Boosted DM
Active Production	Possible	Maybe
Approaches	Large Vol. (w/ high E _{th}) Beam-produced	Lager is better, but $\stackrel{\triangleright}{l}_{\nabla} E_{th}$ Beam-produced
Experiments	SK/HK, DUNE, IceCube, T2K, DUNE, SHiP, FASER,	SK/HK, DUNE, IceCube, T2K, DUNE, SHiP, FASER,

Boosted Dark Matter (BDM)

DM Boosting Mechanisms: Dark Sector

Boosted DM (BDM) coming from the Universe

[Belanger & **JCP**, JCAP (2012); Agashe et al., JCAP (2014); Kong, Mohlabeng, **JCP**, PLB (2015); Berger et al., JCAP (2015); Kim, **JCP**, Shin, PRL (2017); more

✓ Multi-component model $m_2 \gg m_1$

D'Eramo & Thaler, JHEP (2010); Berger et al., JCAP (2015); more]

✓ Semi-annihilation model $m_{\chi} \gg m_X$

[Bhattacharya et al., JCAP (2015);

Heurtier, Kim, JCP, Shin, PRD (2019);

Kopp et al., JHEP (2015);

Cline et al., PRD (2019);

Large E_k^{DM} (monochromatic) due to **mass gap**

✓ Decaying multi-component DM

more

 $m_{\phi} \gg m_{\chi}$

Relic component DM: Non-relativistic!

Only Tiny fraction of DM: Relativistic!

DM Boosting Mechanisms: Cosmic-Rays (CRs)

Cosmic-Ray-Induced BDM

 $ightharpoonup e^{\pm}$, p^{\pm} , He, ν , ...

❖ Energetic cosmic-ray-induced

BDM: energetic cosmic-rays

<u>kick DM</u> (large $E_{e^{\pm},p^{\pm},\mathrm{He},\nu,\ldots}$

- \rightarrow large E_{χ})
- → Efficient for **Light DM**

- Charged CRs: [Bringmann & Pospelov, PRL (2019); Cappiello, Ng & Beacom, PRD (2019); Ema et al., PRL (2019); Cappiello & Beacom, PRD (2019); Dent & Dutta et al., PRD (2020); Jho, JCP, Park & Tseng, PLB (2020); Cho et al., PRD (2020); more]
- CR ν (νBDM): [Jho, JCP, Park & Tseng, 2101.11262; Das & Sen, 2104.00027; Chao, Li, Liao, 2108.05608; Lin, Wu, Wu, Wong, 2206.06864; Lin & Wu, 2404.08528; more]

***** From **astrophysical processes:**

Solar evaporation - Kouvaris, PRD (2015)

Dark cosmic rays - Hu +, PLB (2017)

Solar reflection - An +, PRL (2018)

Solar acceleration - Emken +, PRD (2018)

Supernova - DeRocco +, PRD (2019)

Atmospheric collider - Alvey+, PRL (2019)

Earth attraction – Davoudiasl + PRD (2020);

Acevedo + JHEP (2024)

PBH evaporation - Calabrese +, PRD (2022)

Blazar jets - Wang +, PRL (2022); more

Gran Sasso Underground National Laboratory

 m_X (GeV)

Issues in BDM Searches

Minimal Two-component Scenario

Example model: fermionic heavier(χ_0)/lighter(χ_1) DM + dark gauge boson(X)

[G. Belanger, **JCP** (2011)]

❖ Elastic electron [Agashe, Cui, Necib, Thaler (2014)] & elastic proton (even DIS @ e.g. DUNE) [P. Machado, D.

Kim, JCP & S. Shin, JHEP (2020)] scattering channels are available. → Energetic recoil

Issue 1: Background

- **❖** Atmospheric-neutrino-induced events: Irreducible backgrounds
- ❖ Neutral- & charged-current (even DIS) scattering channels are available. → Energetic recoil
- ❖ Good angular resolution allows to isolate source regions, especially very good for point-like sources such as the GC, Sun & dwarf galaxies.

Issue 2: Distinction from v Scenario

- ❖ (Light) BDM behaves like a neutrino.
- ❖ Signature-wise, it is challenging to distinguish the BDM scenario from the neutrino one.

Issue 1 & 2: Avoidable by iBDM Scenario

- ❖ *i*BDM: inelastic DM+BDM [Kim, JCP & Shin, PRL (2017)]
- * Additional signatures from the decay of heavier unstable dark-sector state χ_2 from inelastic scattering.
- * Double-bang: also for ν w/ a heavier state [Coloma, Machado, Martinez-Soler, Shoemaker, PRL (2017)]

Is it possible to have distinctive signatures in the minimal scenario?

Issue 2: Avoidable by Sub-leading Process

- ❖ Distinctive signatures may arise even under the minimal setup, once higher-order corrections are taken into account.
- ❖ A new BDM search strategy utilizing initial-/final-state dark gauge boson radiation, i.e.

"Dark-Strahlung" from cosmogenic BDM [Kim, JCP & Shin, PRD (2019)]

Only recoiled e/p?

Inelastic Nuclear Scattering

❖ Why **inelastic** channel?

> Recent

improvements

Dutta, Newstead et al., [2206.08590]

- > Signatures
 - ✓ **Elastic**: low energy nuclear recoil
 - ✓ **Inelastic**: γ cascade ($\Delta E \lesssim 10$ MeV), γ cascade + nucleons ($\Delta E \gtrsim 10$ MeV)
- **➤** Motivation
 - ✓ A new channel to study
 - ✓ Larger energy $\sim O(1-10)$ MeV
 - ✓ Better S/B ratio

- ✓ Inclusion of multiple excited states
- ✓ Consistent handling of hadronic currents
- ✓ Exclusive cross sections for each state

Sahu et al., [2004.04055]

Inelastic Nuclear Scattering of CR-BDM

* Focus: the interaction between DM & quark

$$\mathcal{L} \supset g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi + \epsilon Q_b A'_{\mu} \bar{q} \gamma^{\mu} q$$

- → DM boosted by cosmic rays (p, He)
- ❖ The expected # of signal events

$$N_{\chi} = N_{T} \Delta t \int \sigma_{\chi N}^{\text{inel}}(E_{\chi}) \frac{d\Phi_{\chi}}{dE_{\chi}} dE_{\chi} \cdot \frac{\Gamma_{N^* \to N\gamma}}{\Gamma_{\text{total}}}$$

- ✓ LSC detectors (JUNO, Borexino): BGs in the signal zone are highly suppressed due to the good E resolution.
- ✓ Cherenkov detectors (SK, HK): de-excitation γ 's are buried in single e-like events.

[Dutta, Huang, Kim, Newstead, JCP & Shaukat Ali, PRL (2024)]

✓ Inelastic (solid) better than elastic (dashed)

Neutrons?

Water-Cherenkov Detectors w/ Gadolinium

- Gd: high n-capture rate & γ's
 w/ characteristic E → the
 addition of Gd greatly
 enhances n detection
 efficiency.
- * **SK-Gd**: mainly for supernova relic neutrinos

Knockout Neutrons @ Cherenkov Detectors

- * So far only p, but higher $p_{th} > 1.07$ GeV.
- * For n, no Cherenkov radiation but γ 's from capture
 - → n can be better than p, especially e.g. @ SK-Gd

[K. Choi & **JCP**, 2409.05646]

✓ Two-component (χ_0, χ_1) BDM model w/ the following interaction between lighter DM (χ_1) & the SM sector,

$$\mathcal{L} \supset iq_B g_B X'_{\mu} [\chi_1^{\dagger} \partial^{\mu} \chi_1 - (\partial^{\mu} \chi_1^{\dagger}) \chi_1] + \frac{1}{3} g_B X'_{\mu} \bar{q} \gamma^{\mu} q$$

- ❖ Rising interest in dark sector (multi-component) scenarios & BDM (Energetic DM)
- ❖ Various BDM production scenarios: Dark sector, Reversing direct detection, Astrophysical
- ❖ Various detection channels: elastic e/p, DIS, inelastic N, n-capture, ...
- *BDM searches are promising & provide a new direction to explore light dark sector physics.
- ❖ Experimental studies have already begun, e.g. SK, COSINE-100, Panda-X, CDEX, NEWSdm, ICARUS, DUNE, ...

Thank you

Supplemental

Many More Well-Motivated Exps.

[P. Machado, D. Kim, **JCP** & S. Shin, JHEP (2020)]

Detectors are
complementary to
one another rather
than superior to the
other!

p-Scattering vs. e-Scattering

[P. Machado, D. Kim, **JCP** & S. Shin, JHEP (2020)]

- ✓ If a BDM search hypothesizes a heavy dark photon (say, sub-GeV range), the *p*-channel may expedite discovery.
- ✓ If a model conceiving iBDM signals allows for large mass gaps between χ_1 and χ_2 , the *p*-channel is more advantageous.
- ✓ The *e*-channel becomes comparable in probing the parameter regions with smaller m_1 and m_X .
- \checkmark As the boosted χ_1 comes with more energy, more parameter space where the *e*-channel is comparable opens up.
- ✓ With cuts, more e-channel favored region.

p-Scattering vs. DIS: Numerical Study

[P. Machado, D. Kim, **JCP** & S. Shin, JHEP (2020)]

- ✓ We study $\sigma_{\chi_1 p}^{\text{cut}}/\sigma_{\text{DIS}}$ where 200 MeV < p_p < 2 GeV is applied to $\sigma_{\chi_1 p}$ while no cuts are imposed to σ_{DIS} .
- ✓ p-scattering dominates over DIS for m_X < O(GeV) (cf. ν scattering via W, Z).
- \checkmark As the process becomes more "inelastic", *p*-scattering dominates over DIS for a given E_1 .
- ✓ DIS-preferred region expands in increasing E_1 .

Inelastic Nuclear Scattering of DM

❖ Gamow-Teller (GT) transitions are the dominant contribution to the inelastic cross section.

$$\frac{d\sigma_{\chi N}^{\text{inel}}}{d\cos\theta} = \frac{2\epsilon^2 g_D^2 E'_{\chi} p'_{\chi}}{(2m_T E_R + m_{A'}^2 - \Delta E^2)^2} \frac{1}{2\pi} \frac{4\pi}{2J + 1} \times \sum_{s_i, s_f} \vec{l} \cdot \vec{l}^* \frac{g_A^2}{12\pi} |\langle J_f || \sum_{i=1}^A \frac{1}{2} \hat{\sigma_i} \hat{\tau_0} || J_i \rangle|^2,$$

$$\sum_{s_i,s_f} \vec{l} \cdot \vec{l}^* = 3 - \frac{1}{E_{\chi} E_{\chi}'} \left[\frac{1}{2} \left(p_{\chi}^2 + {p_{\chi}'}^2 - 2m_T E_R \right) + \frac{3m_{\chi}^2}{4} \right]$$

* For more details, See e.g. Dutta et al., [2206.08590].

❖ The expected # of signal events

$$N_{\chi} = N_{T} \Delta t \int \sigma_{\chi N}^{\text{inel}}(E_{\chi}) \frac{d\Phi_{\chi}}{dE_{\chi}} dE_{\chi} \cdot \frac{\Gamma_{N^* \to N\gamma}}{\Gamma_{\text{total}}}$$

* γ -line @ JUNO by ν 's [Suliga & Beacom, PRD (2023)]

[Dutta, Huang, Kim, Newstead, JCP & Shaukat Ali, PRL (2024)]

The GT strengths are derived from experimental results & the large-scale shell model code BIGSTICK.

Estimated Background Rates for Line Searches

[Dutta, Huang, Kim, Newstead, **JCP** & Shaukat Ali, PRL (2024)]

* The main irreducible background: the elastic & inelastic NC scattering of solar & atmospheric neutrinos.

Benchmark Scenario: p of Knockout Nucleons

* Two-component (χ_0, χ_1) BDM model w/ the following interaction between lighter DM (χ_1) & the SM sector,

$$\mathcal{L} \supset iq_B g_B X'_{\mu} [\chi_1^{\dagger} \partial^{\mu} \chi_1 - (\partial^{\mu} \chi_1^{\dagger}) \chi_1] + \frac{1}{3} g_B X'_{\mu} \bar{q} \gamma^{\mu} q$$

* This sort of scenarios can arise with various new gauge bosons, e.g., $U(1)_{B-L}$, $U(1)_{B}$, $U(1)_{B-3L\mu_{1}\tau}$, and $U(1)_{T_{3}R}$.

[K. Choi & **JCP**, 2409.05646]

Initial momentum of knockout nucleons

Simulated Energies of γ rays

[K. Choi & **JCP**, 2409.05646]

BDM=Hot DM?

 \checkmark χ_2 : heavy DM, χ_1 : light DM

- ❖ BDM=hot DM → Strong constraints from cosmological evolution, structure formation, etc?
 - $\succ \chi_2 \chi_2 \rightarrow \chi_1 \chi_1 \text{ Vs } \chi \chi \rightarrow \nu \nu$
 - $rac{n_{\chi_1}}{m_2^2} \propto \frac{\langle \sigma v \rangle_{\chi_2 \chi_2 \to \chi_1 \chi_1}}{m_2^2} \text{ with } \langle \sigma v \rangle_{\chi_2 \chi_2 \to \chi_1 \chi_1} \sim 10^{-26} \text{ cm}^3/\text{s}$

Self-Heating Effects?

<u>Large self-scattering</u> is <u>quite natural</u> for light dark sector!

For
$$g_{\chi_1} \approx O(1)$$

& $m \approx O(10 \text{ MeV})$,

$$\sigma_{\chi_1}^{
m self} pprox rac{g_{\chi_1}^4}{\pi} rac{m_{\chi_1}^2}{m_{
m med}^4}$$

 $\Rightarrow \sigma_{\chi_1}^{\rm self}/m_{\chi_1} \approx \mathbf{0} (1 \text{ cm}^2/\text{g})$

1. The heavy χ_2 annihilates to light χ_1 which becomes boosted.

Self-Heating Effects!

[J. Kim, Lim, **JCP** & Kong, PTEP (2024)]

Large self-scattering is quite natural for light dark sector!

For
$$g_{\chi_1} \approx O(1)$$

& $m \approx O(10 \text{ MeV})$,

$$\sigma_{\chi_1}^{
m self} pprox rac{g_{\chi_1}^4}{\pi} rac{m_{\chi_1}^2}{m_{
m med}^4}$$

 $\rightarrow \sigma_{\chi_1}^{\rm self}/m_{\chi_1} \approx O(1~{\rm cm}^2/{\rm g})$

- 1. The heavy χ_2 annihilates to light χ_1 which becomes boosted.
- 2. Sharing energies through self-interaction $\sigma_{\chi_1}^{\rm self}$ which increases the χ_1 temperature.

Thermal Evolution

Cosmological Constraints & Dark Photon Searches

$$\mathcal{L} \supset \epsilon A'_{\mu} J_{\text{em}}^{\mu} - i g_{D} A'_{\mu} \left(\chi_{1}^{*} \partial^{\mu} \chi_{1} - \chi_{1} \partial^{\mu} \chi_{1}^{*} \right) - \frac{\lambda_{\text{ast.}}}{4} \left| \chi_{1} \right|^{2} \left| \chi_{0} \right|^{2}$$

Perturbation Evolution

❖ Coupled equations for the density perturbation

[J. Kim, Lim, **JCP** & Kong, PTEP (2024) & JCAP (2025)]

$$\begin{split} \frac{d\delta_{2}}{dt} + \frac{\theta_{2}}{a} - 3\frac{d\Phi}{dt} &= \frac{\left\langle \sigma v \right\rangle_{22 \to 11}}{m_{2}\bar{\rho}_{2}} \left(-\Psi \left(\bar{\rho}_{2}^{2} - \frac{\bar{\rho}_{2,\text{eq}}^{2}}{\bar{\rho}_{1,\text{eq}}^{2}} \bar{\rho}_{1}^{2} \right) - \bar{\rho}_{2}^{2}\delta_{2} + \frac{\bar{\rho}_{2,\text{eq}}^{2}}{\bar{\rho}_{1,\text{eq}}^{2}} \bar{\rho}_{1}^{2} \left(2\delta_{2,\text{eq}} - \delta_{2} - 2\delta_{1,\text{eq}} + 2\delta_{1} \right) \right), \\ \frac{d\theta_{2}}{dt} + H\theta_{2} + \frac{\nabla^{2}\Psi}{a} &= \frac{\left\langle \sigma v \right\rangle_{22 \to 11}}{m_{2}\bar{\rho}_{2}} \frac{\bar{\rho}_{2,\text{eq}}^{2}}{\bar{\rho}_{1,\text{eq}}^{2}} \bar{\rho}_{1}^{2} \left(\theta_{1} - \theta_{2} \right), \\ \frac{d\delta_{1}}{dt} + \frac{\theta_{1}}{a} - 3\frac{d\Phi}{dt} &= -\frac{\left\langle \sigma v \right\rangle_{22 \to 11}}{m_{2}\bar{\rho}_{1}} \left(-\Psi \left(\bar{\rho}_{2}^{2} - \frac{\bar{\rho}_{2,\text{eq}}^{2}}{\bar{\rho}_{1,\text{eq}}^{2}} \bar{\rho}_{1}^{2} \right) - \bar{\rho}_{2}^{2} (2\delta_{2} - \delta_{1}) + \frac{\bar{\rho}_{2,\text{eq}}^{2}}{\bar{\rho}_{1,\text{eq}}^{2}} \bar{\rho}_{1}^{2} \left(2\delta_{2,\text{eq}} + \delta_{1} - 2\delta_{1,\text{eq}} \right) \right) \\ &+ \frac{\left\langle \sigma v \right\rangle_{11 \to XX}}{m_{1}\bar{\rho}_{1}} \left(-\Psi \left(\bar{\rho}_{1}^{2} - \bar{\rho}_{1,\text{eq}}^{2} \right) - \bar{\rho}_{1}^{2}\delta_{1} + \bar{\rho}_{1,\text{eq}} \left(2\delta_{1,\text{eq}} - \delta_{1} \right) \right) \right| \\ &+ \frac{10^{6}}{\sigma_{\text{self1}}/m_{1} = 1} \operatorname{cm}^{2}/g, \ m_{2} = 30 \, \text{MeV}, \ m_{1} = 5 \, \text{MeV} \\ \frac{d\theta_{1}}{dt} + H\theta_{1} + \frac{\nabla^{2}\Psi}{a} + c_{s,1}^{2} \frac{\nabla^{2}\delta_{1}}{a} = \frac{\left\langle \sigma v \right\rangle_{22 \to 11}}{m_{2}\bar{\rho}_{1}} \bar{\rho}_{2}^{2} \left(\theta_{2} - \theta_{1} \right), \end{aligned}$$

Linear Matter Power Spectrum

❖ Linear power spectrum by *CLASS*

[J. Kim, Lim, **JCP** & Kong, PTEP (2024) & JCAP (2025)]

N-Body Simulation

- ❖ N-body simulations: twocomponent DM simulation built on GADGET-3 to investigate the non-linear effects
- ❖ Visualization of DM density in the periodic $3 h^{-1}$ Mpc box at z = 0 → fewer subhalos

$$\checkmark \frac{\sigma_1^{\text{self}}}{m_{\chi_1}} = 1 \text{ cm}^2/\text{g}$$

- $\checkmark m_{\chi_2} = 30 \text{ MeV}$
- $\checkmark m_{\chi_1} = 5 \text{ MeV}$

N-Body Simulation: Observational Constraints

❖ Maximum circular velocity distribution of sub-halos

[J. Kim, Lim, **JCP** & Kong, PTEP (2024) & JCAP (2025)]

✓ The number of sub-halos is more reduced with smaller $m_{\chi_1} \& m_{\chi_2}$, larger $\sigma_1^{\rm self}/m_{\chi_1}$.

Galactic Density Profile: Total

• Averaged total density profiles of halos with $M > 10^{10} M_{\odot}$ [J. Kim, Lim, **JCP** & Kong, PTEP (2024) & JCAP (2025)]

Galactic Density Profile: Individual

*Averaged individual density profiles of halos with $M > 10^{14} M_{\odot}^{\rm Kim,\ Lim,\ JCP}$ & Kong, PTEP (2024) & JCAP (2025)]

