A review on the X17 anomaly

from the theory side

N

"i‘ Luc Darmé

P 2 IP21 — UCBL
LIBEINFIMIS I 17/09/2025

LYON




Outline

General overview of the X;; anomaly

The tortuous road in model building

An introduction to e*-based X,, searches




Overview of the X17 anomaly

Feng et al. 2016
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* Production of excited nuclei 12C, 8Be and “He,
followed by radiative decays N* > Ny* - Nete™

- The excited states are typically 15 — 20 MeV above the
ground states = sensitive to NP in this mass range
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Experimental timelines
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Upcoming: NewdJedi, Legnaro,
nToF, Montreal X17
* Altogether: the signal is still there on the nuclear physics side, no sighal at MEG
pushes it to somehow lower mass

- No explanation on the nuclear physics side (although the modelling of the background
o by ATOMKI has come under some controversies)



A new boson ?

* If this is a new particle the most obvious

requirements is on the mass !

Extracted from Arias-Aragon et al. 2504.11439

Nucleus (MeV) mx (MeV) Experiment| Ref.
"Be*(18.15) 16.86 + 0.06 £ 0.50 Atomki | [2, 6]
*Be*(18.15) 17.17 £ 0.07 £ 0.20 Atomki (6]

‘He*(20.21/21.01) 16.94 +£0.12 £ 0.21 Atomki 9]
120" (17.23) 17.03 4+ 0.11 4+ 0.20 Atomki [10]
8Be*(GDR) 16.95 + 0.48 £ 0.35 Atomki |[11, 12]
*Be*(18.15) 16.66 + 0.47 +0.35 VNU-UoS | [13]

®Be*(17.64/18.15) < 16.81 [Rpe = 6-107°] MEG II | [17]
ete” = X7 16.90 + 0.02 £ 0.05 PADME |[20, 21]

2504.11439
10 T T T T

5 I | 1 1
16.2 16.4 16.6 16.8 17.0 17.2

my,, [MeV]

- Altogether we know the possible mass extremely well myg , = 16.78 £ 0.12 MeV

- That would make it a light and dark new particle! But how « dark » should this particle

be ?

\ -



Estimate of the X17 couplings: nuclear physics
Our goal : estimating the N* — NX decay rate

9eq U q X
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Estimate of the X17 couplings: nuclear physics

Our goal : estimating the N* — NX decay rate

Use ChiPT +
Low energy

constraint
(LEC)
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(" Scalar : TN scattering / Lattice QCD  ~ 0(30 %)
Pseudo-Scalar : large Nc, DIS processes,
chiral limit, semi-leptonic decays ~0(1)
Vector : no need for data

\_ Axial- Vector : Lattice QCD ~ 0(10 %)
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Estimate of the X17 couplings: nuclear physics
Our goal : estimating the N* — NX decay rate

(" Scalar : TN scattering / Lattice QCD  ~ 0(30 %)

Use ChiPT + Pseudo-Scalar : large Nc, DIS processes,
Low energy < chiral limit, semi-leptonic decays ~ 0(1)

constraint Vector : no need for data

(LEC) .
\_ Axial- Vector : Lattice QCD ~ 0(10 %)

9eq U q X

Nucleon

gnnlnX Multipole
expansion on the o— 2k .
Nuclgar | Nuclear depnsities 5 = 57, + 1 {Zl(fllg.;lln)lg}
Hamiltonian / NR densities * J>0

point-like nucleon -
S,] ;];Hint

gniTnX = g, 2, 6(7 =77 .. = Hippe=[d?7 J,(HX* ... [y
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Spin-parity study

* Since nuclear states have a
definite spin and parity quantum
number, we can find selection
rules for the on-shell X17
production

—> Scalar (0+) excluded by 2Be data

—>%He data mixes 0+ and 0- excited
nuclei

—12C data are incompatible with a
pseudo-scalar X17

J.=LDJx

Adapted from Toni et al. v P, = (=1)"Px
2212.06453 X boson spin parity
N N* JT §T_1- §T_1+ S§T_(- ST — o+t
8Be 0+ (V) (AV) (PS) (S)
¥Be(18.15) | 1+ 1 0. 2 .
‘He 0+
1He(21.01) | 0~ / 1 0 /
1He(20.21) | 0F 1 / / 0
120y 0+
20(17.23) | 1- 0,2 1

* Conclusion: both parity for a spin-1 particle are a priori possible, but one
would need both scalar AND pseudo-scalar couplings to fit all excesses.

\ -
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Low energy couplings

* Need coupling to ete™ AND a very large couplings to quarks to fit the excess

> Typically a few 1073 for vectors, tens of GeV
effective NP scale for ALPs, etc ... 0.015

—>There are plethora of low energy constraints
relevant for such large couplings —
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Phenomenology and model building




Simplified models and UV construction

Scalar Portal

Higgs mixing

Vector Portal

Kinetic mixing

Neutrino
Portal

Neutrino mixing

77@

9eto ,

c
Ot,'o »
X
ed

“Uplin,

m—

Need a boson

ul'ulX
dTrdX
el'eX




Simplified models and UV construction
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Simplified models and UV construction

4 )
Gauged B Gauged
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Gauged B — L
\_ J
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Low energy constraints (vector case)

Jae 9ve
9u

* |n order to have a chance to fit the nuclear
anomalies we need

% -> For the quark sector g,, and/or g, =
1073
—>The coupling to electron must be non-zero,
go=5-107°

9v



‘

Low energy constraints  Accelerator Accelerator
searches, searcnes,
(g - Z)e (g o Z)e

y

- Existing beam dump and
collider searches have , |
extensively probed the “ 10-5 A
region below 20 MeV

- We have a lower limit on the  107° 3
electron coupling - i’“i[

- NA48 study of m° decays 10774 TEEE e
implies piophobia

Visible DP

- 10'_2 1d—1 100 101
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Accelerator

Low energy constraints  Acelerator ecelore®" Neutrino scattering
zzaid;s ) (g —2). - TEXONO

Ge X Gv,

T > yX %‘9
NA48 %
\ Q)“y Denton and Gehrlein 2304.09877
Q _
&
Q
Qb("
. : — CEVNS: t
—> Since the couplingto o 10°: VINS: curren
~ i NSI: future
CEVNS - nucleons must be 3
. > —_— g2
Dresden large, neutrino S iAM
~ scattering data lead 1077 —
In X to strong constraints : SN
Iveu on the neutrino — &2 preferred
interactions 8 L .
Iveu Y05 10 100 107 105 107
\\_ gele




I_OW eﬂergy ConStra|ntS Accelerator ~ Mgller

Accelerator

Neutrino scattering
searches,

searches, scattering _TEXONO
Atomic parity (g —2), (9 —2)e
violation 9
Qd) Jae Gve Je X gve
+« (Gw
gac
m’ - yX N Jae e
NA48 <D ;
Y u
Q,%
&
o
* Having parity-violating interactions in the leptonic
CEVNS - 9a sector leads to very strong constraints
Dresden — from atomic parity-violation in Cesium (155¢s)
S
Gn X | 9ac] 10.47 gy, + 0.53gy4] < 1.8-10712
Ive,
7, —> Moller scattering L-R asymmetry (SLAC E158)

| Yve gAel S 10_8

€Sv90°¢T ¢ Wwol4
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Accelerator

Neutrino scattering

I_OW ene rgy con St 'd | ntS Accelerator ~ Mgller

searches, scattering searc;es, _TEXONO
Atomic parity (g —2), ¥ (9—2)
violation
\ gAe X gVe ge X gve

Ae

9

- X S e e
NA48 %
\ Q}Q)“y o Hostert and Pospelov 2306.15077
& N
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«— SINDRUM o
+§ 10—*
CEVNS - ©
Dresden - T i
* Charge pion decay e
s + +,- = g0
gn % T sev,(X—>eTe)
Gveu constrains a combination LS

(e=1072)

all couplings 10 20 50 70 90 110

10—12

(9ru—9ra) + Gre—91v) S8.5-107°




Case study : the B-L pio-phobic line of research

* One of the earliest constructions, attracted significant interest during the

last decade

L > gpX,(qv*q
—Ly HP)

Step 1 : Introduce a new B-L gauge group
— conserved SM current

L o gg X,[(qy*q — ¢y *¢)

ec . u
+ E]em]

L o ggp X,[(qy*q — ey te)

€cu
+ el +

Step 2 : Add kinetic mixing to make it
piophobic

Step 3 : Neutralise neutrinos with new VL

mixing
-

The leptonic part of the current is now unconserved

-> exclusion from tt - e v, X decays

Gvp = 9ve = 2 Gvu + Gva ~
39p is unsuppressed : Exclude
by m%decays

Jvgn ~ g5 is too large :
Excluded by neutrino

dataset

(9g —9p) + (gp) 8.5-107°



Summary of model building status

* | am not aware of any published model with a X;, new particle which
concurrently
- Fits all the excited nuclear decays simultaneously (1%C, 8Be and “He)

- Is compatible with all known low energy constraints (in particular pionic decays +
neutrino limits)

That obviously does not imply that it is impossible, but it makes it clear that its hard




Summary of model building status

* | am not aware of any published model with a X;, new particle which
concurrently
- Fits all the excited nuclear decays simultaneously (1%C, 8Be and “He)

- Is compatible with all known low energy constraints (in particular pionic decays +
neutrino limits)

That obviously does not imply that it is impossible, but it makes it clear that its hard

Some directions pointed at in current literature include : (1) testing combined models scalar-
pseudo scalar (2) relaxing some nuclear requirements (e-g using MEG-Il non-result in Be)

* The superposition of many constraints of different origins makes it difficult to
have a final statement on the existence of the X~
—>More theory and experimental work needed,
- Use the electron coupling !



Electron / Positron searches :
towards a definitive answer ?




An electronic search

Nuclear processes
) ¢ e+/e_ beam dump

C and e* /e~ collider
-———>

Mesons decays Model independent + test NP
E—— origin of the signal

* We look for a light boson decaying to mostly to eTe™ with mass:

my, = 16.78 £ 0.12 MeV

e The narrow mass range plus model-independent e* couplings makes this
anomaly a perfect target for a resonant search |

* It is also in @ mass regime that has been extensively explored for FIPs

\ -



The vector case

* Current combination of N64 107
and PADME searches would '
have nearly covered the gap

- If only PADME didn’t see an
excess...

Adeuiwiaid - Q1

. . L 0 1077
* An interesting combination of
two very different analysis

strategy

| E14L
> NA64 uses beam-dump approach and has : e O RSAY, KEK
an upper bound due to short life-time of

5
the X17 - See Paolo Crivelli’s and 10

15 16 17 18 19 20
Mx [M EV]

Victor Martin Lozano’s talks !

- PADME relies on a « scanning » strategy,
varying the energy of their positron beam
\ and X17 prompt decay - See Mario Antonelli’s talk !




The ALP case

The « tip » of the NA64
search does not cover the
relevant range

- Mostly due to somehow
reduced production rates w.r.t
the vector case

The E141 exclusion sadly do
not extend to the X17 line in
that case

= It is however very likely that
FASER constraints would cover a
part of this regime if quark
couplings were included

|!'Caution ! Un ing from the vector case : to
be _’Icilfen with KLOE, 2015
10°- 5
' L& Highly likely
s partially covered
NAG4. 5, by FASER for
any combination
of up and down
1071 quark couplings
E‘j_&-l f_
3
e
ORSAY
10 _> | Lepton couplings nnij
15 16 17 18 19 20
M x [MEV]



Theoretical challenges in both cases

 For NA64 : X17 is at the tip of beam dump sensitivities
— Strong sensitivity to details of the NP simulation process and location
of production inside the target

 For PADME : the true process X
involves a positron interacting with G
an entire electronic cloud: e

— Electrons are in bound states
_ . We cannot use a
and we must include their simple ete™ - Xy

. ., . process:
momentum density distribution the full bound
state must be

described




Strong effect on the sighal shape

 The PADME sensitivity is dependent on the signal width
- Modeled using Compton scattering experimental data

g‘l%e 2'_I L L o L T UL L L L L I_
Ores ™~ mZ6(Eg — Eres)| — o™ mx =17 MeV Diamond
me Q| gv=107"°
. on = 0.5% — ¢ al rest
l Include the beam energy E / i i

—— Compton Profile

spread
”//”””,,/f’iéiff_ —
jdEb Ores(Eg) Gaussian(Ey, Eg, 6g) § :
P
l/nclude the electron motion GUO% i ]
via Compton scattering data &) \_

-‘_‘-—-_-‘_-"_— k 1 L ] |

L : | [ L | e [
}(”} 270 275 280 285 290 295 300
Ep [MeV]

Resonant cross-check on Carbon Diamond

‘dedekA f(ky) 0,05(Eg, ka) Gaussian(E,, Eg, 65)

\ -



Conclusion




Conclusion

* The X17 anomaly is now almost a decade-old !

* It has certainly proved to be a strong challenge for adventurous
phenomenologists

—And led to several new insights in exploring the dark word (in particular in
the relevance of pionic decays, a temporary revival of MeV-scale QCD axion,
exploration of neutrino neutralisation, etc...)

* There is a strong experimental effort to go the bottom of this
guestion

- Hopefully precise insights will help in orientating future model-building
efforts
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The X17 couplings

* The couplings and mass both enters in fitting the excess =2 simultaneous fit of
12C, 8Be and “He required, not available yet with the latest data

~
e |

Cn

" €6$90°2TZZ UOL pue 1pINpieg

18F

It may be that the

central value for the 16}

mass will move to

accomodate the fit in & 14

Feng et al. 2006.01151

" 4He 10%x /Mo
2C10° My,

E,i:ﬂ

couplings! I
12} 7 ®gg
4. R
2] S—
Measured 2C is just 3/' ‘
below this line 16.8 16.9

-0015 -0.010 -0.005 0.000 0005 0.010 0015 See also the recent
2406.08143

17.0 171 17.2

A full mass +
couplings fit

would put us
around here ?

* We need a clean way of testing the new physics explanation, which does not
suffer from large nuclear uncertainties

lL



Rare decays searches

e Rare decays probes are both extremely effective in probing X17, often at

the price of a large model dependence

* Mesons decay probes (example from mostly last year)

Vector state

Axion

_A

, hep-ex/0610072 Feng et al
0 . . . _ . .
o m° — yV;,, for vector states: NA48 bounds implies proto-phobic (1604.07411,1608.03591)

, 2006.01151
o J/W decays, charm couplings only  Banetal. 2012.04190

. oB* - BV;;,,D* - D V,, for vector states Castro and Quintero 2101.01865

r —
onm'>a;;, »>ete”, K > n(m)a;;,K > uvay;  egAlvesetal. 1710.03764, 2009.05578

Lo m%> ay; a;; a;; and other multi-leptons final states Hostert and Pospelov 2012.02142

f flavour-violation, many more available channels both in lepton decays
and in “standard” flavoured meson decay.

* Also radiative emission from u decay

\ -
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JINR-2311.18632 \

v's from | & Il Groups outside the trigger (Thr.=0

* They studied the process i
GeV | o Bokor. it
d (2.0 ) + C — yy + X NQ 800 - - g EL >‘2°5;n:A\;V
nucl > Eyl /E2<0.4
—> The claim is that the invariant mass = on >4
reconstruction of the di-photon pair lead to an = 400-
=z
excess of at 17 MeV
0- S ——
. Y-gp}:%m)e‘{e?“\. e ) 200" Norm. by total NTY =
S ©
| -
b= |
o
2
O
()
o
=
=
) 0O 20 40 60 80 100

Internal beam
of the Nuclotron

My (MeV/c?)




Recent developments : pionic constraints

e Limits from ©° — yX processes have been
included since 2016

- Use NA438 limit, leads to strong requirement on
Gvp =2 Ggyu+gvag S4-107*
- Key requirement behind the « pio-phobic »

structure
. —_ —_ X;l Xy +
* Charged pion decaym™ — e v, X also lead
to significant limits in case of non-conserved N g g flAnn x,
/4
currents Ll @ ;N\<
— +
(Gru—9ra) +(gLe — grv) $85-107° YT Napann x,
Internal Bremsstrahlung \
1—-4

—> Similar constraints exists for the ALP case 2
2209.00665

LLOST90€C
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Low energy constraints  Acelerator  Maller Accelerator  eutrino scattering

searches,

searches, scattering _TEXONO
Atolmic parity (g —2), ¥ (9—2)
violation
X
\ Qg gd) gAe gVe ge X gve
* OW
gae L

0 - yX 3
NA48 <D

— Tt o ev, X
SINDRUM

(gRu ng)‘l'(gLe gLv)<85 10_5




Going resonant ...

€+

* We will be interested into the simplest
possible mechanism for new bosons :
Gve ete™ — V, resonant production

€ gge
Ores ~ Z_TrleT[Z 5(E+ - Eres)
 Significantly larger CSthanete™ — YV, % - yV, and bremsstrahlung

process

 What are the trade-offs for resonant production ?

—> First, we need to find positrons somewhere. Typically, this implies a certain loss in
energy + beam intensity

—> Then we need to hit the resonant energy Scom = 2 My Eyps = M2




Resonant production and CoM energy

 Several effects concur to make the CoM energy
a not-so-precisely defined quantity

s = 2m? +2ym(1 - B,)

%on with the target

Beam energy

4 N

- Typically a percent level
effect for highest energy
beam (e.g. CERN North Area)

— Can be much lower (of at the
cost of reducing the beam

intensity), per-mil level /

\_

— Use straggling and \
bremsstrahlung processes to
degrade the beam energy

—> Effective to probe a large
range of masses without
varying the beam energy too

" /

P+ = (Eb, Eb)

p- = (ym, £ym,p)

The electron is NOT at rest

- Depends on the target nature
and electronic structure

ﬂ ~ aZeff
In high-Z material, core electrons
are typically relativistic

- We compare the electron
momentum to its mass )




Valence electrons : Compton

« Compton scattering YA — ye~ A" has long been a tool a choice for atomic
physicists to cross-checks there calculation of orbitals
- There are an extensive dataset of electron density profile integrated
along the beam axis, which is basically what we need here

X-Ray determination of the Electron Momentum Theoretical Compton profile of diamond, boron
do _ C( 9 ) J( ) Density in Diamond, Graphite and Carbon Black nitride and carbon nitride
dwsdQ2 =(lwe, w0, 5 P £, bs [Phys. Rev. 176 (1968) 900] [Physica B 521 (2017) 361-364]

10 il 1.8. =
_ u.k,EN | 16 —=«—BN
wa, Ky €5 v ——— HARTREE-FOCK 1s?2s2p® - —+—C3N4
—— CARBON BLACK Js . §
-------- DIAMOND POWDER i
— -— HARTREE-FOCK CORE Is® | el |
Y " f‘} 1.0 F
| o = I
1 -1 2 x Z
| ® ~ = 08 |-
.’I < = L
o~ | 04k
P e i g 02
E £, , ; ool & o & |
p . 0 | 2 3 4 8 6 0 1 2 3 4 5 6
1 £ z, ELECTRON MOMENTUM (a.u.) r(a.u.)



Nuclear physics

8Be studies

Cng&lvnller -1703.04588 2 \

Improved ATOMKI background
Hayes et al. - 2106.06834

R-matrix study (fit to data) -> issue

with ATOMKI bkd at large angle
Paneru et al. PRC111, =

064609 (2025)
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Ab-intio
3Be
results
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MEG — Il results

 Reproduce the 8Be ATOMKI process
- No observation, but
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