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ATOMKI experiments

• Production of excited nuclei 12C, 8Be and 4He, 
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ground states → sensitive to NP in this mass range
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• Altogether: the signal is still there on the nuclear physics side, no signal at MEG 
pushes it to somehow lower mass
→ No explanation on the nuclear physics side (although the modelling of the background 
by ATOMKI has come under some controversies)
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A new boson ?

11

• If this is a new particle the most obvious
requirements is on the mass !

→ Altogether we know the possible mass extremely well 𝑚𝑋17
≃ 16.78 ± 0.12 MeV

→ That would make it a light and dark new particle! But how « dark » should this particle
be ?

2504.11439

Extracted from Arias-Aragon et al. 2504.11439
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𝑔𝑛 ത𝑛 Γ 𝑛 𝑋 Multipole
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Spin-parity study

• Since nuclear states have a 
definite spin and parity quantum 
number, we can find selection 
rules for the on-shell X17 
production
→ Scalar (0+) excluded by 8Be data

→
4He data mixes 0+ and 0- excited 
nuclei

→
12C data are incompatible with a 
pseudo-scalar X17

𝑁∗ → 𝑁 𝑋

𝑉

• Conclusion: both parity for a spin-1 particle are a priori possible, but one 
would need both scalar AND pseudo-scalar couplings to fit all excesses.

(V) (AV) (PS) (S)

Adapted from Toni et al.
2212.06453



Low energy couplings
• Need coupling to 𝑒+𝑒− AND a very large couplings to quarks to fit the excess

Fits from Toni et al.
2212.06453

𝑔𝑛 = 𝑔𝑉𝑢 + 2 𝑔𝑉𝑑

𝑔
𝑝

=
2

𝑔
𝑉

𝑢
+

 𝑔
𝑉

𝑑
(𝑞𝑢+2𝑞𝑑)/𝑚𝑛 [𝐺𝑒𝑉−1]

(𝑞
𝑑

+
2

𝑞
𝑢

)/
𝑚

𝑝
[𝐺

𝑒
𝑉

−
1

]

→Typically a few 10−3 for vectors, tens of GeV 
effective NP scale for ALPs, etc …

→There are plethora of low energy constraints 
relevant for such large couplings



Phenomenology and model building
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Simplified models and UV construction 

New gauge boson
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New scalar sector
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Flavoured
Higgs 
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𝑔𝐴𝑒 𝑔𝑉𝑒

𝑔𝑢

Low energy constraints (vector case)

• In order to have a chance to fit the nuclear
anomalies we need
→ For the quark sector 𝑔𝑢 𝑎𝑛𝑑/𝑜𝑟 𝑔𝑑 ≳

10−3

→The coupling to electron must be non-zero, 
𝑔𝑒 ≳ 5 ⋅ 10−6



𝑔𝐴𝑒 𝑔𝑉𝑒

𝑔𝑢

Low energy constraints Accelerator 
searches , 
𝑔 − 2 𝑒

Accelerator 
searches, 
𝑔 − 2 𝑒

𝜋0 → 𝛾𝑋
𝑁𝐴48

→ Existing beam dump and 
collider searches have 
extensively probed the 
region below 20 MeV

→We have a lower limit on the 
electron coupling

→NA48 study of 𝜋0 decays 
implies piophobia

LD from DarkCast



𝑔𝐴𝑒 𝑔𝑉𝑒

𝑔𝑢

Low energy constraints Accelerator 
searches , 
𝑔 − 2 𝑒

Accelerator 
searches, 
𝑔 − 2 𝑒

𝜋0 → 𝛾𝑋
𝑁𝐴48

→ Since the coupling to 
nucleons must be
large, neutrino 
scattering data lead 
to strong constraints
on the neutrino 
interactions 𝑔𝜈𝑒,𝜇

Denton and Gehrlein 2304.09877

𝑔𝑛 ×
𝑔𝜈𝑒,𝜇

𝑔𝑒 × 𝑔𝜈𝑒

CEvNS -
Dresden

Neutrino scattering
- TEXONO

𝑔
𝜈

𝑒
,𝜇

/𝑒
𝑔𝑒/𝑒



𝑔𝐴𝑒 𝑔𝑉𝑒

𝑔𝑢

𝑔𝐴𝑒 × 𝑔𝑉𝑒

𝑔𝑛 ×
𝑔𝜈𝑒,𝜇

𝑔𝑒 × 𝑔𝜈𝑒

Low energy constraints Accelerator 
searches , 
𝑔 − 2 𝑒

Accelerator 
searches, 
𝑔 − 2 𝑒

Møller
scattering

Atomic parity
violation

𝜋0 → 𝛾𝑋
𝑁𝐴48

CEvNS -
Dresden

Neutrino scattering
- TEXONO

• Having parity-violating interactions in the leptonic 
sector leads to very strong constraints
→ from atomic parity-violation in Cesium 

→  Moller scattering L-R asymmetry 

| 𝑔𝑉𝑒 𝑔𝐴𝑒| ≲ 10−8

| 𝑔𝐴𝑒| |0.47 𝑔𝑉𝑢 + 0.53𝑔𝑉𝑑| ≲ 1.8 ⋅ 10−12

(SLAC E158)

(133Cs)

Fro
m

2
2

1
2
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6

4
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𝑔𝐴𝑒 𝑔𝑉𝑒

𝑔𝑢

𝑔𝐴𝑒 × 𝑔𝑉𝑒

𝑔𝑛 ×
𝑔𝜈𝑒,𝜇

𝑔𝑒 × 𝑔𝜈𝑒

𝜋+ → 𝑒 𝜈𝑒 𝑋
SINDRUM

• Charge pion decay
𝜋+ → 𝑒 𝜈𝑒 𝑋 → 𝑒+𝑒−

constrains a combination of 
all couplings

𝒈𝑹 𝒖 − 𝒈𝑹 𝒅 + 𝒈𝑳 𝒆 − 𝒈𝑳 𝝂 ≲ 𝟖. 𝟓 ⋅ 𝟏𝟎−𝟓

Low energy constraints Accelerator 
searches , 
𝑔 − 2 𝑒

Accelerator 
searches, 
𝑔 − 2 𝑒

Møller
scattering

Atomic parity
violation

𝜋0 → 𝛾𝑋
𝑁𝐴48

CEvNS -
Dresden

Neutrino scattering
- TEXONO

Hostert and Pospelov 2306.15077



Case study : the B-L pio-phobic line of research

• One of the earliest constructions, attracted significant interest during the 
last decade

Step 1 : Introduce a new B-L gauge group 
→ conserved SM current

Step 2 : Add kinetic mixing to make it
piophobic

Step 3 : Neutralise neutrinos with new VL
mixing

The leptonic part of the current is now unconserved
-> exclusion from 𝜋+ → 𝑒 𝜈𝑒 𝑋 decays

𝑔𝑉𝑝 = 𝑔𝑉𝜋 = 2 𝑔𝑉𝑢 + 𝑔𝑉𝑑 ∼

3𝑔𝐵 is unsuppressed : Exclude
by 𝜋0decays

𝑔𝜈𝑔𝑛 ∼ 𝑔𝐵
2 is too large : 

Excluded by neutrino 
dataset

𝐿 ⊃ 𝑔𝐵𝑋𝜇(ത𝑞𝛾𝜇𝑞

−തℓ𝛾 𝜇ℓ)

𝐿 ⊃ 𝑔𝐵 𝑋𝜇[ ത𝑞𝛾𝜇𝑞 − തℓ𝛾 𝜇ℓ

+
𝑒 𝜀

𝑔𝐵
𝐽𝑒𝑚

𝜇
]

𝐿 ⊃ 𝑔𝐵 𝑋𝜇[ ത𝑞𝛾𝜇𝑞 − ҧ𝑒𝛾 𝜇𝑒

+
𝑒 𝜀

𝑔𝐵
𝐽𝑒𝑚

𝜇
] + ⋯

𝒈𝑩 − 𝒈𝑩 + 𝒈𝑩 ≲ 𝟖. 𝟓 ⋅ 𝟏𝟎−𝟓



Summary of model building status

• I am not aware of any published model with a 𝑋17 new particle which 
concurrently
→ Fits all the excited nuclear decays simultaneously (12C, 8Be and 4He)

→ Is compatible with all known low energy constraints (in particular pionic decays + 
neutrino limits)

That obviously does not imply that it is impossible, but it makes it clear that its hard



Summary of model building status

• I am not aware of any published model with a 𝑋17 new particle which 
concurrently
→ Fits all the excited nuclear decays simultaneously (12C, 8Be and 4He)

→ Is compatible with all known low energy constraints (in particular pionic decays + 
neutrino limits)

That obviously does not imply that it is impossible, but it makes it clear that its hard

Some directions pointed at in current literature include : (1) testing combined models scalar-

pseudo scalar (2) relaxing some nuclear requirements (e.g using MEG-II non-result in Be)

• The superposition of many constraints of different origins makes it difficult to 
have a final statement on the existence of the 𝑋17

→More theory and experimental work needed,

→Use the electron coupling !



Electron / Positron searches : 

towards a definitive answer ?



q

q

X 17

e+

e−

An electronic search

• The narrow mass range plus model-independent 𝑒± couplings makes this 
anomaly a perfect target for a resonant search !

• It is also in a mass regime that has been extensively explored for FIPs

• We look for a light boson decaying to mostly to 𝑒+𝑒− with mass:

q

q

X 17

e+

e−

Nuclear processes

Mesons decays

• 𝑒+/𝑒− beam dump 
and 𝑒+/𝑒− collider

𝑚𝑋17
≃ 16.78 ± 0.12 MeV

Model independent + test NP 

origin of the signal

q



The vector case

• Current combination of N64 
and PADME searches would 
have nearly covered the gap
→ If only PADME didn’t see an 
excess… 

LD
 - P

relim
in

ary• An interesting combination of 
two very different analysis 
strategy
→NA64 uses beam-dump approach and has 

an upper bound due to short life-time of 
the X17

→PADME relies on a « scanning » strategy, 
varying the energy of their positron beam 
and X17 prompt decay → See Mario Antonelli’s talk !

→ See Paolo Crivelli’s and 
Víctor Martín Lozano’s talks !



The ALP case

• The « tip » of the NA64 
search does not cover the 
relevant range
→Mostly due to somehow 

reduced production rates w.r.t 
the vector case

•  The E141 exclusion sadly do 
not extend to the X17 line in 
that case 
→ It is however very likely that 
FASER constraints would cover a 
part of this regime if quark 
couplings were included

Highly likely

partially covered

by FASER for 

any combination 

of up and down 

quark couplings

! Caution ! Unpublished recasting from the vector case : to 
be taken with a grain of salt !



Theoretical challenges in both cases

𝑝𝑏 𝑝𝐴

𝑝𝑋

• For PADME : the true process 
involves a positron interacting with 
an entire electronic cloud: 
→ Electrons are in bound states 

and we must include their 
momentum density distribution

• For NA64 : X17 is at the tip of beam dump sensitivities
→ Strong sensitivity to details of the NP simulation process and location 
of production inside the target   

𝑋

𝑔𝑣𝑒

We cannot use a 

simple  𝑒+𝑒− → 𝑋17

process:

the full bound

state must be

described



Strong effect on the signal shape
• The PADME sensitivity is dependent on the signal width
→ Modeled using Compton scattering experimental data

𝜎𝑟𝑒𝑠 ∼
𝑔𝑣𝑒

2

2 𝑚𝑒
𝜋 𝑍 𝛿(𝐸𝐵 − 𝐸𝑟𝑒𝑠)

න𝑑𝐸𝑏 𝜎𝑟𝑒𝑠 𝐸𝐵 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝐸0, 𝐸𝐵 , 𝛿𝐵)

න 𝑑𝐸𝑏 න𝑑𝑘𝐴 𝑓 𝑘𝐴 𝜎𝑟𝑒𝑠 𝐸𝐵, 𝑘𝐴 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝐸0, 𝐸𝐵 , 𝛿𝐵)

Include the beam energy

spread

Include the electron motion

via Compton scattering data

Resonant cross-check on Carbon Diamond



Conclusion



Conclusion 

• The X17 anomaly is now almost a decade-old !

• It has certainly proved to be a strong challenge for adventurous 
phenomenologists
→And led to several new insights in exploring the dark word (in particular in 

the relevance of pionic decays, a temporary revival of MeV-scale QCD axion, 
exploration of neutrino neutralisation, etc…)

• There is a strong experimental effort to go the bottom of this 
question
→ Hopefully precise insights will help in orientating future model-building 
efforts



Backup



The X17 couplings

• The couplings and mass both enters in fitting the excess → simultaneous fit of  
12C, 8Be and 4He required, not available yet with the latest data

Feng et al. 2006.01151B
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It may be that the 

central value for the 

mass will move to 

accomodate the fit in 

couplings!

Measured 12C is just

below this line

A full mass + 

couplings fit 

would put us 

around here ?

• We need a clean way of testing the new physics explanation, which does not 
suffer from large nuclear uncertainties

See also the recent
2406.08143 



Rare decays searches 
• Rare decays probes are both extremely effective in probing X17, often at 

the price of a large model dependence 

• Mesons decay probes (example from mostly last year)

o  𝜋0 → 𝛾𝑉17, for vector states:  NA48 bounds implies proto-phobic

o  𝐽/Ψ decays, charm couplings only

o𝐵∗ → 𝐵 𝑉17, 𝐷∗ → 𝐷 𝑉17 for vector states

o  𝜋0→ 𝑎17 → 𝑒+𝑒−, 𝐾 → 𝜋 𝜋 𝑎17, 𝐾 → 𝜇𝜈 𝑎17 

o  𝜋0→ 𝑎17 𝑎17 𝑎17 and other multi-leptons final states

e.g Alves et al. 1710.03764, 2009.05578

hep-ex/0610072

Ban et al. 2012.04190

Castro and Quintero 2101.01865

Feng et al. 
(1604.07411,1608.03591) 
2006.01151
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• If flavour-violation, many more available channels both in lepton decays 
and in “standard” flavoured meson decay.

• Also radiative emission from 𝜇 decay  

Hostert and Pospelov 2012.02142



JINR - 2311.18632
• They studied the process

 𝑑 2.0
𝐺𝑒𝑉

𝑛𝑢𝑐𝑙
+ 𝐶 → 𝛾𝛾 + 𝑋 

→ The claim is that the invariant mass 
reconstruction of the di-photon pair lead to an 
excess of at 17 MeV 



Recent developments : pionic constraints

• Limits from 𝜋0 → 𝛾𝑋 processes have been 
included since 2016
→ Use NA48 limit, leads to strong requirement on 

𝑔𝑉𝑝 = 2 𝑔𝑉𝑢 + 𝑔𝑉𝑑 ≲ 4 ⋅ 10−4

→ Key requirement behind the « pio-phobic » 
structure

2
3
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6
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5

0
7

7

• Charged pion decay 𝜋− → 𝑒−𝜈𝑒 𝑋  also lead 
to significant limits in case of non-conserved
currents

→ Similar constraints exists for the ALP case 

𝑔𝑅 𝑢 − 𝑔𝑅 𝑑 + 𝑔𝐿 𝑒 − 𝑔𝐿 𝜈 ≲ 8.5 ⋅ 10−5

2209.00665



𝑔𝐴𝑒 𝑔𝑉𝑒

𝑔𝑢

𝑔𝐴𝑒 × 𝑔𝑉𝑒

𝑔𝑛 ×
𝑔𝜈𝑒,𝜇

𝑔𝑒 × 𝑔𝜈𝑒

𝜋+ → 𝑒 𝜈𝑒 𝑋
SINDRUM

𝑔𝑅 𝑢 − 𝑔𝑅 𝑑 + 𝑔𝐿 𝑒 − 𝑔𝐿 𝜈 ≲ 8.5 ⋅ 10−5

Low energy constraints Accelerator 
searches , 
𝑔 − 2 𝑒

Accelerator 
searches, 
𝑔 − 2 𝑒

Møller
scattering

Atomic parity
violation

𝜋0 → 𝛾𝑋
𝑁𝐴48

CEvNS -
Dresden

Neutrino scattering
- TEXONO



Going resonant …

•  We will be interested into the simplest 
possible mechanism for new bosons : 
𝑒+𝑒− → 𝑉, resonant production

• What are the trade-offs for resonant production ?
→ First, we need to find positrons somewhere. Typically, this implies a certain loss in 

energy + beam intensity

→ Then we need to hit the resonant energy 

𝑉

𝑔𝑣𝑒

• Significantly larger CS than 𝑒+𝑒− → 𝛾𝑉, 𝜋0 → 𝛾𝑉, and bremsstrahlung 
process

𝜎𝑟𝑒𝑠 ∼
𝑔𝑣𝑒

2

2 𝑚𝑒
𝜋 𝑍 𝛿(𝐸+ − 𝐸𝑟𝑒𝑠)

𝑠𝐶𝑜𝑀 = 2 𝑚𝑒 𝐸𝑟𝑒𝑠 = 𝑀𝑉
2



Resonant production and CoM energy

• Several effects concur to make the CoM energy 
a not-so-precisely defined quantity

Beam energy

→ Typically a percent level
effect for highest energy
beam (e.g. CERN North Area)

→Can be much lower (of at the 
cost of reducing the beam
intensity), per-mil level

Beam interaction with the target

→Use straggling and 
bremsstrahlung processes to 
degrade the beam energy

→ Effective to probe a large 
range of masses without 
varying the beam energy too 
much

𝑠 = 2 𝑚𝑒
2 + 2𝛾𝑚𝑒𝐸𝑏 (1 − 𝛽𝑧)

The electron is NOT at rest

→Depends on the target nature 
and electronic structure

𝛽 ∼ 𝛼𝑍𝑒𝑓𝑓

→We compare the electron 
momentum to its mass

In high-Z material, core electrons 

are typically relativistic



Valence electrons : Compton
• Compton scattering 𝛾𝐴 → 𝛾𝑒−𝐴+ has long been a tool a choice for atomic 

physicists to cross-checks there calculation of orbitals
→ There are an extensive dataset of electron density profile integrated 
along the beam axis, which is basically what we need here 



Nuclear physics

8Be studies

Zang&Miller - 1703.04588

Improved ATOMKI background

4He studies

Viviani et al. - 2104.07808 

Ab initio study from nuclear 
Hamiltonian + X17 included !

Hayes et al. - 2106.06834 

R-matrix study (fit to data) -> issue 
with ATOMKI bkd at large angle

Paneru et al. PRC 111, 
064609 (2025)

R-matrix study  - reduced 
required X17 rates for PS case

Gysbers et al. - 2308.13751 ; 
Navratil et al. - 2212.00160 
  Ab initio studies

Aleksejev et al. – 
2102.01127

Arbitrary 
normalizations for 
NLO QED effect could 
mimic the signal

SM studies

12C studies

Mommers et Vanderhaeghen. 
- 2406.08143 

Ab initio particle-hole shell 
model → large uncertainty on 
axial vector case 



Ab-intio
8Be 
results

Gysbers et al. - 2308.13751 



MEG – II results

• Reproduce the 8Be ATOMKI process
→ No observation, but 
compatibility at 2sigma
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