Overview of FIP searches at fixed-target experiments

Maksym Ovchynnikov Light dark world 2025

Topics of the talk

- 1. Fixed-target (FT) experiments: what are they and what FIPs do they search for
- 2. Exclusion power of FT experiments
- 3. Theoretical uncertainties in the FIP phenomenology
- 4. Discovery power: potential and caveats

1. FT experiments: what are they and what do they search for

Introduction I

FIPs with mass 1 MeV $\lesssim m \ll \Lambda_{\rm EW}$

- Variety of well-defined models
- Involved in many BSM scenarios
- Target parameter space: between cosmo/astro* and past lab experiments

^{*} Up to our ignorance of the cosmological setup

Minimal, lowest-dimension, gauge-invariant interactions Adds one FIP

Model	(Effective) Lagrangian	What it looks like
HNL N	$Yar{L} ilde{H}N + ext{h.c.}$	Heavy neutrino with
		interaction suppressed by $U \sim \frac{Y v_h}{m_N} \ll 1$
Higgs-like scalar S	$cH^\dagger HS$	A light Higgs boson with
		interaction suppressed by $ heta \sim rac{cv_h}{m_h} \ll 1$
Vector mediator V	$-rac{\epsilon}{2}B_{\mu u}V^{\mu u}+gV^{\mu}J_{\mu,B}$	A massive photon/vector meson with
		interaction suppressed by $\epsilon,g\ll 1$
ALP a	$c_G rac{lpha_s}{4\pi} a G^{\mu u} ilde{G}_{\mu u} + \dots$	A $\pi^0/\eta/\eta'$ -like particle with
		interaction suppressed by $\frac{f_{\pi}}{f_a} \ll 1$
MCPs χ	$\kappa e ar{\psi} \gamma^\mu \psi A_\mu$	Millicharged particle
		•••

Non-minimal yet "compact" models > 1 FIPs, and/or additional quadratic coupling

Model	(Effective) Lagrangian	What it looks like
FIPs X with	$\mathcal{L} = \mathcal{L}_{\min} + \alpha h X X$	Minimal FIP with
quadratic hXX coupling	$\mathcal{L} = \mathcal{L}_{\min} + \alpha n A A$	additional production modes
Quasi-elastic DM χ	$a \cdot \overline{\nu} \alpha \cdot \nu V^{\mu}$	Stable particles
Quasi-elastic Divi χ	$g_d ar{\chi} \gamma_\mu \chi V^\mu$	coupled via dark photons $oldsymbol{V}$
Inelastic DM χ', χ	$g_d \bar{\chi'} \gamma_\mu \chi V^\mu + \mathrm{h.c.}$	An unstable particle χ'
melastic DM χ , χ	$g_{d\chi} \gamma_{\mu} \chi v \gamma_{\mu} = \text{n.c.}$	decaying into $\chi + SM$
		A dark photon/ALP
Dark QCD $ ho_d/\pi_d$	$ar{q}_{d}\gamma^{\mu}q_{d}Z_{\mu}^{'}+\ldots$	with additional production
	•	in showerings

Beam dump experiments I

Fixed-target experiments – perfect setups to search for FIPs

- Large intensity+background suppression
- Forward placement $\Rightarrow \lesssim \mathcal{O}(1)$ geometric acceptance
- Not too small (good for small $c\tau$), not too large $\gamma_{\rm FIP}$ (good for large $c\tau_{\rm FIP}$)

Beam dump experiments II

Classification

1. Signature:

- Scatterings (ICARUS, DUNE, ProtoDUNE, SHiP, ...)
- Decays (above + NA62, DarkQuest, ...)
- Missing energy (NA64, NA62, ...)

3. Location:

- SPS (NA64, NA62, ProtoDUNE, SHiP,...)
- Fermilab (ICARUS, DUNE, DarkQuest)
- DESY (LUXE)
- LHC (SHIFT)
- JAEA (J-PARC)

2. Beam type:

- Electron/photon (NA64, LUXE, ILC-BD)
- Muon (NA64- μ)
- Proton (NA62, ...)

4. Status:

- Currently running (NA62, $\overline{\text{NA64},...}$)
- Approved/to be run* (LUXE, SHiP, DarkQuest)
- Proposals (SHIFT, ILC-BD, NA64-μ)

Beam dump experiments III

SHiP

- Beam dump experiment@SPS, operating time starts in 2033 (for 15 years)
- Bg-free searches for decays
- $N_{
 m PoT} = 6 \cdot 10^{20} \; (10^3 imes \sigma_{pp} \cdot \mathcal{L}_{
 m HL\text{-}LHC})$
- $N_{b\bar{b}} \sim 10^{14}$ (comparable to LHCb@HL-LHC)

Potential of FT experiments

Exclusion potential

- Fix a particular FIP model
- How much parameter space may be excluded by future searches if not seeing a signal? Framework: [2305.13383]
- Important for selling your experiment

\mathbf{vs}

Discovery potential

- Assume some events have been observed
- Can we identify the underlying FIP model?
- Can we establish whether it is related to the BSM problems?
- Important for established experiments

1. Exclusion potential

Exclusion potential (more: ESPP process) I

Quasi-elastic DM

- Efficiently explored with scattering/missing energy signature
- Thermal relic line: may be practically anywhere, subject to cosmic setup

Meaning of the legend. exp: proposal. exp: currently running. exp^* : approved/in construction. exp^* : currently running, but the luminosity is to be approved

Exclusion potential (more: ESPP process) II

Higgs-like scalar

Minimal model (case

$$Br(h \to SS) = 0$$

- Scalars may be copiously produced via FCNC currents [1904.10447]
- Most efficiently probed at **B** factories

Exclusion potential (more: ESPP process) III

ALP (γ dominance)

- ALPs are efficiently produced in the Primakov process [1904.02091]
- Very efficient at FT experiments

Exclusion potential (more: ESPP process) IV

Dark photons

- Dark photons are produced in the forward direction in EM-like processes [2409.11096], [2504.06828]
- Such processes are efficient at fixed-target experiments

Exclusion potential (more: ESPP process) V

HNL

- HNLs are produced like massive neutrinos [1805.08567]
- Sensitivity comes from K, D, B factories

2. Uncertainties in phenomenology

Issue: uncertainties in phenomenology I

Hidden assumption made above:

We exactly know the FIP phenomenology (how they are produced and decay)

- In reality, this is not true for hadronically coupled GeV-mass FIPs
- Their hadronic interactions cannot be described by either pQCD or ChPT

Issue: uncertainties in phenomenology II

Main challenge – mixing with mesons

- Interaction Lagrangian of a FIP X:

$$\mathcal{L} = X^a \cdot \mathcal{O}_a[\psi_{\text{SM}}] + X^a X^b \cdot \mathcal{O}_{ab}[\psi_{\text{SM}}] + \dots$$
 (1)

 $-m_{\rm FIP} \simeq 1~{\rm GeV} \Rightarrow {\rm expand}~\mathcal{O}_a[\psi_{\rm SM}]$ in terms of bound hadronic states \mathcal{Y} :

$$\mathcal{O}_{a} = \overbrace{c_{1}(\mathcal{Y}, \partial \mathcal{Y}, \partial^{2} \mathcal{Y})_{a}}^{\text{1-particle}} + \overbrace{c_{2}(\mathcal{Y}^{2}, (\partial \mathcal{Y})^{2}, \mathcal{Y} \partial \mathcal{Y})_{a}}^{\text{2-particle}} + \dots$$
 (2)

 $-X^a\mathcal{Y}_a$ - induced resonant mixing. Every process with \mathcal{Y} may involve X by replacing

$$\psi_{\mathcal{Y}} \to \theta_{\mathcal{Y}X}\psi_X, \quad \theta_{\mathcal{Y}X} = \frac{c_1}{m_X^2 - m_{\mathcal{Y}}^2 - im_{\mathcal{Y}}\Gamma_{\mathcal{Y}}} + \dots$$
 (3)

[2504.06828]

Issue: uncertainties in phenomenology III

Main challenge – mixing with mesons

Particle	Mixing with ${\cal Y}$
Dark photon/dark $ ho$	$ ho^0, \omega, \phi$ and their excitations
V coupled to J_B^μ	ω, ϕ and their excitations
Higgs-like scalar	f_0 and its excitations
$ m ALP/dark~m{\pi}$	π^0, η, η' and their excitations
HNL	No mixing

- Most of the "simplest" FIP models introduce mixing
- To understand their interaction, it is necessary to carefully know the meson spectroscopy in the mass range $M \lesssim 2 \text{ GeV}$
- This includes ground states (e.g., ρ^0) and excitations ($\rho^0(1450),...$)

[2504.06828]

Issue: uncertainties in phenomenology IV

Meson spectroscopy [pdg]

- Poorly measured masses and widths for some mesons
- Interpretation is ambiguous:
 - One meson or two mesons?
 - 2-quark or 4-quark bound states?
- This is important when embedding them into SU(3)representations

Issue: uncertainties in phenomenology V

Example 1: dark photons

- Uncertainties are mainly in production, and heavily influence the parameter space of dark photons – both in terms of mass and coupling!
- Affect any experiment, vector mediators V coupled to hadrons, and also DM coupled to V!

[2409.11096]

Issue: uncertainties in phenomenology VI

Example 2: hadronically coupled ALPs

- ALPs mix with π^0, η, η' and excitations $P_h = \pi^0(1300), \eta(1295), \dots$
- To describe the $a P_h$ -mixing: use ELSM [2407.18348], [1612.09218]
- P_h enhance the ALP decay widths by 1-2 orders of magnitude (depending on the coupling pattern)

- Issue: [1612.09218] dropped various P_h interactions contributing to the mixing
- Their impact on the ALP decays: to be quantified In progress

[2501.04525]

Exclusion potential: conclusions

- Complementarity between various signatures/experiments in the broad range of masses and couplings
- Upcoming and future searches may explore orders of magnitude in parameter space

What about the discovery potential?

Discovery potential We observed events. What's next?

Reconstructing mass/decays

By observing interactions of FIPs, we may:

- Reconstruct the FIP invariant mass
- Identify decay/scattering modes

10-1000 events are required, depending on the decay palette (this is why we need large intensity!)

From seeing post-production to identifying the model I

Ambiguity in case of detection

- FIP model identification: seeing FIP production and subsequent interaction
- FT experiments: typically, only see post-production interaction

- The typical "exclusion" signature, single vertex, provides little insight about production

[2503.01760]

From seeing post-production to identifying the model II

Ambiguity in case of detection

What we see	What it may be
	Minimal dark photon V
Dark photon-like decay	Dark photon with hVV coupling
	Dark $ ho$ meson
	Minimal ALP
ALP-like decay	ALPs with <i>haa</i> coupling
	Dark π
	Minimal scalar S mixing with h
Higgs-like particle decay	Scalars with additional hSS interactions
	Dark Higgs from DM sector
HNL-like decay	Minimal HNL
HINL-like decay	HNLs with additional $U(1)_Y$ interaction
DM like geettering	Elastic DM
DM-like scattering	DM with elastic + inelastic couplings

[2503.01760]

From seeing post-production to identifying the model III

Possible solution: going beyond single-vertex signature

≥ 2 decays per event

- In many non-minimal models, FIPs may be produced in pairs, and may both decay
- Seeing such events: rules out the minimal FIP model
- However, ambiguity among different models with pair-decays remains

[2503.01760]

From seeing post-production to identifying the model IV

- Reconstructing decays of the pair \Rightarrow reconstructing their **combined** invariant mass m_{inv}
- Shape of m_{inv} may tell about the FIP pair production without seeing the production
- Allows differentiating between FIPs with different pair-production mechanisms $(\mathcal{O}(100)$ events are needed)

From seeing post-production to identifying the model V

Example: dark ρ s

- Compared to dark photons: additional production in showerings
- It may be possible to see events with $1, 2, 3 \rho_d$ s at SHiP:
 - 1 ρ_d ("mono"): ambiguity with dark photons
 - 2 ρ_d s ("di"): differentiate between ρ_d and dark photon with hVV coupling via m_{inv}
 - 3 ρ_d s ("tri"): smoking-gun signature

In preparation

Sensitivity to Higgs-like scalars: see [2503.01760]

From seeing post-production to identifying the model VI

n-scatterings:

• MCPs

detector

Scatterings + decays:

- DM: scatterings $\chi + p/e \rightarrow \chi' + X$ followed by $\chi' \rightarrow \chi + X$,
- Portals: neutrino upscattering + decay

 $[1707.08573],\ [1902.03246],\ [2012.08595],\ [2312.14868],\ [2503.01760],\ [2505.05663],\ldots$

From signal to resolution of BSM problems: HNL example I

Realistic HNL model as an example (aka ν MSM):

- Two quasi-degenerate HNLs N_1, N_2 with tiny mass splitting Δm
- May simultaneously generate neutrino masses and baryon asymmetry of the Universe
- At accelerator experiments, $N_{1,2}$ typically behave as a quasi-particle N with mass m_N and coupling pattern $U_{e,\mu,\tau}$

Seeing HNL-like decays and reconstructing m_N, U_α , what we may tell?

From signal to resolution of BSM problems: HNL example II

- $-U_{lpha}^{2},m_{N}$ parametrize neutrino mixing matrix $heta_{ij},\,\delta_{ ext{CP}}$
- Varying θ_{ij} , δ_{CP} , Δm_{ij}^2 within uncertainty range, obtain the region of possible U_{α}^2/U^2 for the given ν mass hierarchy

$$U^2 = \sum_{lpha}^{\circ} U_{lpha}^2$$

 100 – 1000 events are required to test the neutrino hierarchy and extract the Majorana phase

[2312.05163]

From signal to resolution of BSM problems: HNL example III

- $-N_{1,2}$ oscillate with length $l_{
 m osc}pprox 2\pi\gamma/\Delta m$
- Oscillations violate lepton number
- Resolve oscillations by distinguishing LNV and LNC decays \Rightarrow measure Δm
- This information is encoded in the angular distribution of the decay products (due to helicity conservation)

[1912.05520]

Conclusions

- New physics with mass in the GeV range: underexplored in the past, orders of magnitude exploration in the near future with fixed-target experiments
- Think about future searches not in terms of exclusion but in terms of potential discovery
- Coherent efforts from theoretical and experimental communities will be needed to understand the future results

Backup slides

Relic target line

We know a little about

- The Early Universe before neutrino decoupling
- Properties of dark sector interaction structure, particle content, etc.

DM parameter space may be any

- Entropy dilution, "secret" interactions may heavily affect the abundance
- Do not concentrate on the relic target line

Beam dump experiments vs collider searches I

Higgs-like scalar

Case
$$\operatorname{Br}(h \to SS) = 1\%$$

 Most efficiently probed at **h** and **B** factories

Beam dump experiments vs collider searches II

HNL

- FCC-ee will complementarily probe the large mass region $m_N \gtrsim m_B$
- But the domain $m_N \lesssim m_B$ will remain underexplored

 $m_N \, [{
m GeV}]$

- FCC-hh-based experiments: significantly extend the SHiP reach for $m_D < m_N < m_B$

Dark photons: phenomenology I

Dark photons [1801.04847], [2409.09123], [2409.11096]:

– Decays may be extracted from $e^+e^- \to \text{hadrons}$ the using the VMD+HLS framework

Dark photons: phenomenology II

- Production modes: no opportunity to directly use real data. Mixing contributes to proton bremsstrahlung and fragmentation
- Quasi-real approximation: $\sigma_{pp\to V+X} \approx \int d\Phi P_{p\to p'V} \times \sigma_{pp\to X}$ (parametrized by the virtuality of p')
- Proton EM form-factor in the timelike region $F_p^{(1,2)}(q^2 > 0)$: where the mixing enters

Dark photons: phenomenology III

- Unitary analytic model:

$$F_p^{(1,2)}(q) = \sum_i rac{f_i m_{V_i}^2}{q^2 - m_{V_i}^2 - i \Gamma_{V_i} m_{V_i}}$$

- Varying masses and width of vector mesons V_i heavily changes form-factors and widths within orders of magnitude
- Results in the plot optimistically fix the widths [2409.09123]

[2504.06828], [2409.11096]

Hadronically coupled ALPs I

$$\mathcal{L}_{a} = c_{G} \frac{\alpha_{s}}{4\pi} \frac{a}{f_{a}} G^{a}_{\mu\nu} \tilde{G}^{\mu\nu,a} + \frac{\partial_{\mu}a}{f_{a}} \sum_{q} c_{q} \bar{q} \gamma^{\mu} \gamma_{5} q + \text{flavor-changing}$$
(4)

1. Perform the chiral rotation

$$q \to e^{-i\gamma_5 c_G \kappa_q a/f_a} q, \quad q = u, d, s$$
 (5)

with $\operatorname{tr}[\kappa_q] = 1$

It converts the gluonic coupling into the second term of Eq. (??)

- 2. Make a correspondence between the resulting theory and ChPT Lagrangian $\mathcal{L}_{\text{ChPT+a}}[\kappa_q]$ [2012.12272]
- 3. Supplement the interactions with phenomenological Lagrangians describing interactions with other mesons $(\rho, K_0, f_2, \text{ etc.})$

Hadronically coupled ALPs II

Unlike dark photons, no data allows direct extraction of ALP decay rates

– Heavy pseudoscalar mesons P_h :

Resonance	$\eta(1295)$	$\pi^0(1300)$	$\eta(1405/1475)^*$	$\pi^0(1800)$
Mass [GeV]	1.294	1.3	1.408/1.476	$1.9 \cdot 10^{-4}$
Width [MeV]	55	200 - 600	50/96	215

^{*:} may be interpreted as a single $\eta(1440)$

- Some of P_h s are very narrow and hence cannot be "averaged out"
- Previous studies did not consider the ALP mixing with P_h [1811.03474], [2110.10691], [2310.03524]

Hadronically coupled ALPs III

- Extended linear sigma model (ELSM) [2407.18348], [1612.09218] framework of systematic incorporating various mesons
- ELSM adds a heavy pseudoscalar octet and identifies the "flavorless" excitations with $\pi^0(1300), \eta(1295), \eta(1440)$
- ALPs may be added to the ELSM Lagrangian completely similarly to the ChPT case

Hadronically coupled ALPs IV

Incompleteness of ELSM and limited knowledge of properties of heavy excitations [2407.18348]:

- Ref. [1612.09218] dropped various operators with heavy pseudoscalars that may severely contribute to the c_G terms
 - Including them, however, requires a full re-analysis of the ELSM fit to data
 - A study including these terms: in preparation
- $\pi^0(1300)$ has poorly measured width
- It is not clear whether the $\eta(1295/1440)$ are 2-quark bound states or also include 4-quark admixtures

Higgs-like scalars: decays and their uncertainties

- Decays: no data to extract directly, but the scattering data $\pi\pi \to \pi\pi$, $\pi\pi \to KK$ may be used to calculate the width using dispersion relation methods
- Issues: systematic uncertainties in the scattering phase shift significantly affect the calculations + only the simplest decay modes $(S \to \pi\pi, KK)$ can be studied this way

Impact of uncertainties in dark photon phenomenology on sensitivity to DM I

- In a typical DM model to be probed at fixed-target experiments, the main production mode is the decay of the mediator
- Hence, any uncertainty in mediator's phenomenology propagates to the DM phenomenology!

Impact of uncertainties in dark photon phenomenology on sensitivity to DM II

• Examples: quasi-elastic and inelastic DM models coupled to dark photons at SHiP

Di-decays: Higgs-like scalar I

- Higgs-like scalars S with tri-linear coupling to h at various experiments
- $\mathbf{Br}(h \to SS)$ is set to the maximally possible $\mathbf{Br}(h \to SS) = 1\%$, to marginalize over the values of the tri-linear hSS coupling

A closer look on HNL discovery I

A closer look on HNLs

- Two observable ν mass differences \Rightarrow at least two different HNLs $N_{1,2}$ are required.
- HNL mass difference $\Delta m \equiv m_{N_1} m_{N_2}$ may be arbitrary
- Small $\Delta m \ll m_{N_{1,2}} \approx m_N$ and similar U^2 : $N_{1,2}$ form quasi-particle
- However, there are $N_1 \leftrightarrow N_2$ oscillations with frequency $\omega_{
 m osc} = \Delta m$
- Small Δm leads to a resonant enhancement of the lepton-violating processes in the Early Universe \Rightarrow HNL-driven BAU becomes possible
- Depending on the mixing pattern $U_e^2: U_\mu^2: U_\tau^2$, may also provide masses to active neutrinos [0605047]

A closer look on HNLs

- N_1 effectively behaves as a particle and N_2 as an anti-particle, so oscillations lead to the lepton number violating (LNV) processes
- Three different types of behavior of $N_1 N_2$ system depending on the scale L of the experiment $(l_{\rm osc} = 2\pi/\omega_{\rm osc}c)$:
 - $l_{
 m osc} \ll L$: $N_1 N_2$ behaves as a single Majorana particle
 - $l_{\rm osc} \gg L$: $N_1 N_2$ behaves as a single Dirac particle
 - $l_{\rm osc} \simeq L$: oscillations may be resolved within the experiment

Resolving HNL oscillations – insights on their relation to BAU

A closer look on HNL discovery III

- Resolving oscillations requires distinguishing LNV and LNC (lepton number conserving) decays
- It would be easily done if one could get access to the production vertex via, e.g., the leptons sign correlation in the chain $B^{\pm} \to l^{\pm} + N$, $N \to l^{\pm} + \pi^{\mp}$
- This is impossible at SHiP. However, the information about the primary vertex is conserved by HNL helicity, which is related to the lepton number
- Helicity, in turn, affects the angular distribution of HNL decay products

A closer look on HNL discovery IV

- So the analysis requires reconstructing the ratio of LNC/LNV events as a function of the decay length
- Given the complexity of HNL production modes, simple analytic arguments are not enough to distinguish the LNC and LNV events
- Multivariate analysis based on boosted decision trees has been performed in 1912.05520

For $l_{osc} \simeq L$, $\mathcal{O}(1000)$ events are required to extract Δm