

FIP / LLP searches at LHCb

Andrii Usachov Nikhef, Amsterdam

on behalf of the LHCb collaboration

Light Dark World 2025 Madrid, September 16th, 2025

LHCb detector

- Forward spectrometer, designed as the b-physics experiment at the LHC
- Precise vertex reconstruction with VELO
- Powerful $p/K/\pi$ separation using RICH detectors
- Coverage complementary to ATLAS and CMS in p_{T} and η
- Unique sensitivity for light LLPs / FIPs in O(GeV) range

LHCb in long term

- Run 3: main physics using 2024 + 2025 + 2026 data
- Run 4: add new complex triggers on GPUs
- Run 5: Upgrade 2 completely new detector, scoping document this year

LLP searches at LHCb

So far focused on signatures within VELO volume

- Displacement of ~30 cm *decays of B-mesons with $\tau = 1.5~ps$ correspond to displacement of O(mm)
- Thin VELO envelope (RF foil) backgrounds
 - heavy flavor decays at r < 5 mm
 - material interactions at r > 5 mm
- Precise material veto thanks to imaging using vertices from secondary particles
- Can be extended to downstream region

LLP searches at LHCb

Displaced leptons

• Dark photon PRL 120 (2018) 061801, PRL 124 (2020) 041801

• Low-mass dimuon resonances JHEP 10 (2020) 156

• (heavy) LLPs decaying to $e^{\pm}\mu^{\pm}\nu$ EPJC 81 (2021) 261

• Majorana neutrino PRL 112 (2014) 131802

• Light boson from $b \to s$ decays PRL 115 (2015) 161802, PRD 95 (2017) 071101

Displaced jets

• HNL in $W^{\pm} \to \mu^{+} \mu^{\pm} jet$ EPJC 81 (2021) 248

• LLP → *jet jet* EPJC 77 (2017) 812

• LLP $\rightarrow \mu + jets$ EPJC 77 (2017) 224

Fully neutral:

Low mass ALPs: Search for resonances decaying to photon pairs 2507.14390

Dark photons in di-muon spectrum

- Light dark photon can appear in a mixing with off-shell photon
 - large fraction in forward region, low p_T
- Normalized to off-shell photons
 - no need for efficiencies (for prompt search)

- Bump hunt analysis, regions of SM resonances removed
- Search for both prompt and displaced signatures using Run 2 data

Dark photons in di-muon spectrum

PRL 124 (2020) 041801

- World's best upper limits for inv. mass range of ~200-700 MeV (prompt)
- First displaced search not from beam-dump experiments
 - o explored invariant mass range: 214-350 MeV
- Re-casted to non-minimal models

Light boson in $b \rightarrow s$ decays

• Light boson can contribute to $b \rightarrow s \mu \mu$ penguin decays

PRL 115 (2015)161802 PRD 95 (2017) 071101

- LHCb has world's largest sample of $b \rightarrow s \mu \mu$ decays
- Study of di-muon spectrum

Light boson in $b \rightarrow s$ decays

Search for a narrow di-muon peak

PRL 115 (2015)161802 PRD 95 (2017) 071101

- Displacement of muon pair is considered
- Upper limits on mixing with SM Higgs

• World's best upper limits below $2m_{ au}$

Upgraded LHCb

Major detector upgrade for Run 3 and 4

x5 larger instantaneous luminosity compared to Run 1 and 2

Upgraded LHCb

- Most of electronics replaced
- No hardware trigger, read-out at 30 MHz
- Fully software online trigger on GPUs
- Allows much increased sensitivity for LLP searches with dedicated triggers

Dark photons: new muon and electron ID

• In Run 3 LHCb is covering both di-muon and di-electron modes

- Better tracking-based **muon ID** large improvement at low momentum
- Much smaller mis-id for both muons and electrons
- Expecting greatly improved sensitivity at very low masses

Dark photons: new muon and electron ID

Performance of lepton ID
 with smooth and fast Lipshitz NN

- Prompt di-muon spectrum from HLT1
- x20 more $\eta o \mu \mu$ per fb^{-1} compared to Run 2

Dark Photons in di-electron mode

• Search in $\pi^0/\eta \to \gamma(A \to e^+e^-)$

• Search in $D^* \rightarrow D^0(A \rightarrow e^+e^-)$

Possible observation of True Muonium with Run 3 data PRD 100, 053003 (2019)

Long-lived particles in Run 3

Very long-lived particles: Dark Scalar

- Following on Dark Scalar in $b \rightarrow s$ transitions
- Focus on di-muon signature at first
- The invariant mass resolution is limited
- Sensitivity for lifetimes of O(10 ns):
 up x10 gain in efficiency

Very long-lived particles: Dark Scalar

- Dark Scalar can be found in $b \rightarrow s$ transitions
- Focus on di-muon signature at first
- The invariant mass resolution is limited
- Sensitivity for **lifetimes of O(10 ns)**: up *x10* gain in efficiency
- **Efficiency projection** (zero background)

10

 m_s (GeV)

 10^{-1}

Very displaced Heavy Neutral Leptons

- Theory input on HNL production in b-decays
- Similar benefits at very large lifetimes with downstream and T-tracks
- Best sensitivity around 2-5 GeV
- Sensitivity for HNL originating from B_c decays : unique opportunities at LHCb

Leptonic B_c and B_u production with downstream tracks, $N \to \mu \pi[X]$, $N \to \mu \mu \nu_\mu$ and $N \to \mu e \nu_e$

Semileptonic combined production with T tracks, $N \to \mu\pi[X]$, $N \to \mu\mu\nu_{\mu}$ and $N \to \mu\nu\nu_{e}$

Non leptonic signatures

Low mass ALP searches at LHC

2507.14390

- Recent search by ATLAS using $\gamma\gamma$ provides **strong limits down to ~10 GeV**JHEP 07 (2023) 155
- Best limits around 5 GeV JHEP 01 (2019) 113 using (small) LHCb open data set intended for the $B_s^0 \rightarrow \gamma\gamma$ search
- LHCb to cover broader low mass range below 10 GeV with dedicated di-photon search
- Future opportunities at LHCb and Belle 2 by exploiting hadronic signatures of ALPs

Search for resonances decaying to photon pairs

2507.14390

Photon reconstruction

- Reconstructed from energy deposits in ECAL
- No secondary vertex information –
 photons are assumed to come from the
 PV
- No significant energy smearing for lifetimes up to 20 ps
- Nominal resolution: $\frac{\sigma_E}{E} \sim 3\%$
- Dedicated low mass di-photon triggers in 2018

Search for resonances decaying to photon pairs

Backgrounds

 No substantial peaking backgrounds are in the considered inv. mass window

- Contributions from b- and c- hadrons found to be negligible compared to the background level
- Combinatorial photons mostly coming from π^0 and η decays

Bump hunt

- Upper limits using CLs method to the [4.9 GeV, 14.9 GeV] range
- The first LHCb analysis using only neutrals in the final state

Search for resonances decaying to photon pairs

2507.14390

- Strongest limits by LHCb for ALPs decaying to $\gamma\gamma$ between 4.9 and 10 GeV
- Stronger limits by ATLAS above 10 GeV
- Also, limits for the SM decays @ 95% CL

$$\begin{array}{l} BR\big(B_s^0\to\gamma\gamma\big)<2.68\,\times\,10^{-5}\\ BR\big(B^0\to\gamma\gamma\big)<0.8\,\times\,10^{-5}\\ \sigma\big(pp\to\eta_bX\big)\,\times\,BR\big(\eta_b\to\gamma\gamma\big)<765\;pb\;(84\;pb)_{fiducial}\\ \text{first direct limit on ground-state bottomonium production in }pp\;\text{collisions} \end{array}$$

Summary

- LHCb made searches for dark photon, HNLs, dark scalar from b-decays using Run 1-2 data set, based on <u>displaced muon signature</u>
- First fully neutral search for ALPs in di-photon mode best limits below 10 GeV
- Hadronic signatures remain to be explored with Run 2 and 3 data
- Greatly improved sensitivity thanks to new online GPU trigger with:
 - new lepton ID (both muons and electrons)
 - tracking for very long-lived particles
 - larger statistics
 and has the capabilities to study more complex signatures with dedicated triggers
- Expecting powerful new searches with Run 3 data
- Theory guidance is crucial and very welcome!