PADME results on X17 searches

M. Antonelli (LNF) for the PADME collaboration

Run III setup

2022 Run-III setup adapted for the X17 search:

- Active target, polycrystalline diamond
- No magnetic field
- Charged-veto detectors not used
- ECal: 616 BGO crystals, each 21x21x230 mm³
- Newly built hodoscope in front of Ecal for e/γ
- Timepix silicon-based detector for beam spot
- Lead-glass beam catcher (NA62 LAV spare block)

Charged particle detectors in vacuum
Vacuum tank,
10-6 – 10-7 mbar

Lead glass

Timepix

Electromagnetic calorimeter

Diamond target

Run-III concepts: the observable

At PADME, search for a resonance with e⁺ annihilation in diamond target:

Scan around E(e+) ~ 283 MeV

Beam-energy spread ~0.25%, $\delta E(e^+)$ ~0.7 MeV \rightarrow center of mass steps of 20 keV made Measure two-body final state yield N₂

Master formula for each scan point at c.m. energy s^{1/2}:

$$N_2(s) = N_{POT}(s) \times [B(s) + S(s; M_X, g) \epsilon_S(s)] \text{ vs } N_2(s) = N_{POT}(s) \times B(s)$$

Fundamental inputs:

N_{POT}(s) number of e⁺ on target from beam-catcher calorimeter

B(s) background yield expected per POT

 $S(s; M_X, g)$ signal production expected for {mass, coupling} = { M_X, g }

 $\varepsilon_{s}(s)$ signal acceptance and selection efficiency

s^{1/2} measured from magnetic field (Hall probe) run by run

$$g_R(s) = N_2(s)/[N_{POT}(s) \times B(s)]$$
 kept blind in the analysis

Run-III concepts: the data set

Run III PADME data set contains 3 subset

- On resonance points (263-299) MeV
- Below resonance points (205-211) MeV
- Over resonance, energy 402 MeV

1 over resonance energy point
Statistics ~2 x 10¹⁰ total
Used to calibrate POT absolute measurement

On resonance points, mass range 16.4 — 17.5 MeV Beam energy steps ~ 0.75 MeV ~ beam energy spread Spread equivalent to ~ 20 KeV in mass Statistics ~ 10^{10} POT per point

Below resonance points
Beam energy steps ~1.5 MeV
Statistics ~ 0.8 x 10¹⁰ POT per point
Used to cross-check the flux scale

Run III beam performance: JHEP 08 (2024) 121

Run-III concepts: redundancy

"Run": DAQ for ~8 hours, determine beam avg position/angle, ECal energy scale "Period": a point at a fixed beam energy, typically lasts 24 hours "Scan" a chronological set of periods typically decreasing in energy Scan 1 and 2 periods spaced ~ 1.5 MeV but interspersed in energy

Detailed GEANT4-based MC performed for each period

Run-III result, gR error budget

Uncorrelated uncertainty on $g_R(s) = N_2(s) / (N_{POT}(s) B(s))$:

Estimated errors validated still preserving blind-analysis concept: JHEP 06 (2025) 040

Run-III result

Search for a X17 with Run III data completed: arXiv:2505.24797, paper submitted

Excess observed, 2.5 σ local, 1.8(2) σ global significance

Just for comparison, check expected UL bands: bkg-only vs B+S(16.9 MeV, 5×10^{-4})

Run IV to clarify

See also the CERN EP seminar, https://indico.cern.ch/event/1553077/

Separately measure e⁺e⁻ and γγ yield in Run IV

Presently taking data (Run IV, up to Nov 2025), goal of x4 in statistics with reduced systematics:

- Tuned position of target with respect to Ecal to improved acceptance
- New micromega-based chamber for e+/e⁻ directions and e+/e⁻ vs γ ID, installed Feb 2025
- New micromega-based chamber for beam spot monitoring in front of beam catcher, Apr 2025
- Improved monitoring of beam catcher response stability

Run IV setup

2022 Run-III setup adapted for the X17 search:

- Active target moved downstream by 300 mm
- No magnetic field
- Charged-veto detectors not used
- ECal: 616 BGO crystals, each 21x21x230 mm³
- Hodoscope MicroMega in front of ECal for elγ
- Timepix Micromega TMM for beam spot
- Lead-glass beam catcher now LED monitored

Micromega chamber in Run IV

Detector installed with the novel diamon-shaped readout

Outer dimensions 88 x 88 cm²

Readout by APV25

Time window up to 675 ns (drift time ~500 ns)

Gas mixture: Ar:CF₄:Isobutane = 88:10:2

Provides beam spot with uncertainty $\sigma_{x,v} \sim 30 \ \mu m$

Track points with $\sigma_{\text{x,y}}$ ~ 350 μm and σ_{z} ~ 2 mm per point

Micromega chamber in Run IV

Commissioning using CR events:

- $\sigma_{x,y}$ ~ 350 μ m, σ_z ~ 2 mm
- Hit efficiency > 90%

TPC mode works sarisfactorily

MM chamber in Run IV

Beam monitoring using beam events:

Beam Monitoring

• Charge vs Position

P1 position

- $X_{mean} = 293.26 \pm 0.02 \text{ mm}$
- $\sigma_{\rm v} = 3.41 \pm 0.03 \, {\rm mm}$
- $y_{mean} = 332.25 \pm 0.02 \text{ mm}$

P2 position

- $X_{mean} = 295.71 \pm 0.04 \text{ mm}$
- $\sigma_{\rm x}$ = 4.14 ± 0.05 mm
- $y_{mean} = 341.51 \pm 0.03 \text{ mm}$
- $\sigma_{\rm v}$ = 3.37 ± 0.04 mm

MM chamber in Run IV

Tracking in beam conditions, occupancy as high as 50% Working for a robust track reconstruction

Overview of Run IV status

Online monitor info:

- Beam spill vs time
- Beam spot @ target
- Beam spot @ micromega
- Beam halo @ calorimeter
- Beam spot @ TMM

Conclusions

Analysis of Run III done in a blind way

"Blind unblinding" procedure published as a separate paper Validation of total uncertainty at 0.9% per energy point Result presented and made public on the arXiV, submitted to journal

Run IV planned to significantly improve sensitivity:

Detector upgraded with new micromega tracker + TMM end of line monitor 6 months of data taking

- Run IV-part 1 data already in the book: 18 energy scan points collected (~2e10 PoTs each) equally separated by 1.5 MeV in the E_{beam} = (269.5, 295) MeV / \sqrt{s} = (16.60, 17.36) MeV region
- Run IV-part 2 already scheduled for autumn 2025
 - Scan points = 18-20 + out-of-resonance below 16 MeV and above 18 MeV

Status of the Run IV data taking - commissioning

Commissioning bit longer than expected due to:

- Problems with TimePix detector: albeit working perfectly up to Nov. 2024, internal trigger transmission problems appeared in Feb. 2025
- Problems with diamond target motor driver, replaced with a new Ethernet controller (bought by Sofia U.)
- TimePix sent to Advacam (Prague) for repair, waiting for cost estimate
- TimePix replaced with a 10 x 10 cm² active-area
 MM chamber: so-called TMM

The design of the micromega chamber

Pannelli sandwich Mesh frame Space frame Middle space frame PCB

Installed and precisely aligned at the beginning of Run IV