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Cosmological neutrinos, Nes and CMB

» Cosmic Microwave Background (CMB) is among the most precise
probes of cosmology and new physics

» Produced at T ~ 3000K when the Universe becomes transparent for
photons, it carries information about cosmological history

» CMB power spectrum - shows the temperature fluctuation, it is
affected by the Hubble rate
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Cosmological neutrinos, Nes and CMB

» Cosmic neutrinos (and hypothetical

particles) make a contribution to
the Hubble rate
» Quantified via effective number of
neutrinos Neg
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Cosmological neutrinos, Nes and CMB

» In the Standard Model only relic neutrinos contribute to Ness, exact
value depend on their history

> At T > MeV neutrinos are kept in equilibrium
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> At temperature T = fewx MeV neutrinos start to decouple from
plasma keeping close to equilibrium spectra
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» Below MeV, most neutrinos are decoupled and free-streaming

» Accurate calculation within SM cosmology [2306.05460)]

N = 3.043 (2)


:https://arxiv.org/abs/2306.05460

FIPs Effects in the BBN Era
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Feebly interacting particles (FIPs) or non-standard scenarios can
spoil this picture or modify the results.

Additional lepton asymmetry
Late reheating
Primordial black hole (PBH) evaporation

FIPs (7rip = 1072 s), produced in the early Universe (e.g., HNLs,
dark photons, scalars), can affect cosmology in several ways:
1. Contributing to the expansion rate
2. Entropy injection (EM sector) at decays
3. Injection of high-energy neutrinos = spectral distortions
4. Meson or unstable lepton decays = entropy release + secondary
non-thermal neutrinos

All of these processes can affect Nesr and the CMB.



Boltzmann Equation

» At MeV-scale the standard cosmological system consists of an
equilibrium EM sector, neutrinos and tiny fraction of baryons

» Dynamics of neutrinos can be described via the Boltzmann equation:
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» And coupled equations describing the expansion of the Universe and
thermodynamics

» Non-standard FIPs’ scenarios might include the evolution of new
particles



Solving the Boltzmann System

» Solving this system is necessary to obtain an accurate value of Ne.

» Two main approaches exist for solving the Boltzmann equation:

> Integrated approach — assume neutrino distributions
f, = fep(T), which reduces the problem to a system of
ODEs for T, and T,,.

» Discretized approach — directly solve the Boltzmann
equation numerically on a fixed energy grid for each f,,,.




Integrated Approach

Pros Cons
» Simple and fast — useful for » Breaks down if neutrinos are
estimating v evolution. highly non-thermal (E, > T).
» Intuitively easier to interpret. » May vyield qualitatively incorrect

results in such regimes.

» Convenient for low-energy
neutrino or EM injections. P Less accurate than the
discretized approach.
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Figure: Left: Integrated vs. unintegrated approach for a toy FIP decaying into the
EM sector. Right: Impact on Neg of a decaying HNL: unintegrated (analytic) vs.
discretized (pyBBN) treatment.



Discretized Approach

» Define a momentum grid with fixed step size in comoving
momentum space: p = pphys - a(T)/ao.
> Grid extends from Emin( Tmin) Up t0 Emax - @( Tmin)/0-

Analytically reduce the collision integral.

v

» Solve the Boltzmann integro-differential equation on this grid,
coupled to cosmic expansion (Friedmann equations).

Pros Cons
» Captures the full evolution of the » Requires strong dimensional
neutrino plasma. reduction of Ieii,o.
» Accuracy controlled by grid » Computational cost scales as
resolution.

k+2
tcomp o8 Ez/,maxy

where k is the reduced
dimensionality.

» May produce conflicting results
across implementations.



Direct Simulation Monte Carlo (DSMC)
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Original DSMC was used for the
simulation of rarefied gas flows

Particles are treated individually,
tracking their state {r;,v;, t}

Volume divided into small cells
with N particles

Particles within one cell can collide
At each iterative timestep At
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pairs are sampled for interaction.

Each interaction is accepted with
probability P, = (%) and the
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outgoing kinematics is generated
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DSMC for Early Universe

DSMC can be adapted for the Early Universe dynamics:

General idea:

> System is presented as a set of individual particles (v;/7; and
7, e, potentially X, Y... representing BSM species, mesons
etc.).

> |sotropy and homogeneity - only momenta degrees of
freedom {¥q v;, t}.

» System is split into subsets (cells) at each timestep, and only
interactions within a cell are considered

» EM particles are in thermal equilibrium represented by
Tem/ Tem cel =
No tracking, we sample them at every step.

» Quantum statistics must be taken into account

» Expansion of the Universe is included at each step

Vsystem — Vsystem(l + 3HAt)’ Ei - 1+II::;At




Interaction step

v

Initialize the cell with
Tem,cel = Tem and Ney

Ncey neutrinos are picked randomly
Sample the interaction=

After the Ngampied (At passed)
interactions combine the cells -
average the Tgy

In case of presence of extra species
- determine their dynamics over At
+ inject neutrinos from decays

Update the volume of the system
and particles energies due to
expansion

Repeat

No

Cell with Tgp cer, Ngm,ceur and neutrinos

Randomly select pair to interact |

v

No

Intermediate interaction acceptance
Based on Wpqir/Weeitmax

@ Yes

Determining pair's kinematics
sample e* kinematics from fep (p, Tewcett)s
extract neutrino's kinematics from particles’ data

(2

Simulate pair's collision
Select specific scattering channel,
generate final state kinematics Ejina:

v

Final interaction acceptance
8ased on quantum statistical weight Pysock (Efinat)
Recalculate iy, cou and neutrino particle data

* Yes

Update local properties of the plasma
Update Tgy ceu and New cent Via Pm,cett
Perform oscillations of final neutrinos

Repeat Nsampiea times




What

v

it gives?

Weaker dependence of the complexity on the maximum neutrino
energy in the system =- significant speed-up compared to the
traditional Boltzmann discretization approach.

Possibility to study very high-energetic injections > GeV,
Cross-checks for Boltzmann solver implementations.

Easy tracking of the system at each step and more control over
microscopics.



Cross-checks and tests
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Figure: Energy density evolution if all species are assumed with equilibrium
distribution (integrated approach) with (left) and without ( right) expansion.
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Figure: Approaching the thermal equilibrium in case of high-energy neutrino injection



Cross-checks and tests

» Simulation with N = 3- 10" has fluctuations at level O(0.1%)

» few x100 is a sufficient number of neutrinos per cell
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Figure: The temporal evolution of the quantity dp, when varying numbers of
neutrinos per cell Nei,, and particles in the system N with equilibrium starting

conditions



Injection of 70 MeV neutrinos into v, only, p,./p, = 5%
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» In recent update of the DSMC [2508.08379], complete SM setup
including QED corrections were tested and result Nes = 3.0439 was
obtained. It is in a perfect agreement with previous calculations


https://arxiv.org/abs/2508.08379

Metastable particles

» EM and neutrino injections can
appear through metastable
particles produced in FIPs'
decays

» |t was common to treat them
as instantly decaying

» They can participate in (i)
annihilations, (ii) interactions
with nuclei, (7ii)) EM scatterings
(iv) decays

» Except for EM scatterings

rEM > I—ann, nucl, dec NO clear
hierarchy

We focus on the dynamics of
pE, 7w KE KD
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Figure: BR of different FIPs



Evolution of metastable particles

» We solve a system of coupled equations for each
Y = pt,nt KT KL .
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Figure: The yields of muons and pions that would decay, annihilate, or interact
with the nucleons if injected by decaying toy-model FIP with BR solely into a
AR T T



Nt change for toy models and scalar

Higgs-like scalar
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Figure: Left: toy model decaying only into pions, Right: Higgs-like scalar effect on N

» Accurate account of Y's evolution change the outcome of N value.
» Especially important near the decay mass threshold.



Conclusion

» DSMC presents a new approach of studying the dynamics of
neutrinos during their decoupling

» Their non-trivial evolution can lead to unexpected outcomes in
terms of N

» DSMC proposes a cross-check alternative for SM BBN/CMB
scenario, significantly more efficient option for heavy (mgp < GeV)
FIPs+BBN/CMB and the only option to study ultra-high energy
neutrino injections E, > GeV
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