### Quantum corrections to the path integral of near extremal de Sitter black holes

#### Watse Sybesma

watse.sybesma@su.se

19 June 2025 in Madrid

Based on [2503.14623] with Matthew Blacker, Alejandra Castro, and Chiara Toldo



New Insights in Black Hole Physics from Holography



| 2<br>2<br>2<br>2 | 1204<br>1203<br>1202<br>1201 | Vasudevan / Enuganti<br>Guinet<br>Andronico<br>Santolaria / Gómez Lucas |
|------------------|------------------------------|-------------------------------------------------------------------------|
| 1                | 1104                         | Black / Brane                                                           |
| 1                | 1103                         | Feng                                                                    |
| 1                | 1102                         | Murtazina                                                               |
| 1                | 1101                         | Christian / Rüchardt                                                    |



#### Motivation of this talk

- Black hole conference, why de Sitter spacetime?
- Euclidean path integral provides many quantum corrected insights, in absence of theory of quantum gravity.
- Utilise recent insights of computing path integral corrections using low energy effective theory

$$Z_{\text{low T}} \sim \exp\left(-I(\overline{g}, \overline{A}) + \#\log T\right)$$

- For black holes it has shown corrected thermo, density of states, black hole evaporation, ...
- One hand: investigate applicability this method Other hand: learn something about de Sitter spacetime
- Corrections to de Sitter partition function can help for matching predictions from UV, de Sitter thermo, holography, ...

Plan for today
1 de Sitter spacetime basics,
2 Black Holes in de Sitter spacetime,
3 Essence of log-T corrections,
4 De Sitter black holes and log-T corrections

See also Leopoldo's talk

### de Sitter spacetime basics

### A rapidly expanding universe

Current expanding e.g. Supernova redshift observations, baryonic accoustic osscilations phase



Past expanding phase

e.g. CMB observations; COBE, WMAP

#### De Sitter geometry



Solution to EE with positive cosmological constant

### Connection to rapid expansion: planar coordinates

hypersurface in D+1 Minkowski

 $-X_0^2 + X_1^2 + \ldots + X_D^2 = \ell^2$ 





$$X_0 = \ell \sinh \frac{t}{\ell} - \frac{x_i x^i}{2\ell} e^{-\frac{t}{\ell}},$$
$$X_i = x^i e^{-\frac{t}{\ell}},$$
$$X_D = \ell \cosh \frac{t}{\ell} - \frac{x_i x^i}{2\ell} e^{-\frac{t}{\ell}},$$
$$ds^2 = -dt^2 + e^{-2\frac{t}{\ell}} dx_i dx^i$$

#### Recognise from FLRW

#### Connection to thermodynamics: static coordinates patch



$$\begin{split} X_0 &= \sqrt{\ell^2 - r^2} \sinh \frac{t}{\ell} \,, \\ X_i &= r^i w^i \,, \\ X_D &= \sqrt{\ell^2 - r^2} \cosh \frac{t}{\ell} \,, \\ ds^2 &= -\left(1 - \frac{r^2}{\ell^2}\right) dt^2 + \frac{dr^2}{1 - \frac{r^2}{\ell^2}} + r^2 d\Omega_{d-2}^2 \,. \end{split}$$

#### Timelike Killing symmetry



### Aside: Some holographic attempts

Absence of string theoretical guide or sensible decoupling



dS/CFT – e.g. higher spin realisations

e.g. [Strominger '01][Anninos, Hartman, Strominger '11]

Static patch – e.g. 2d gravity/SYK and role observer

e.g. works by Susskind, and Verlinde and others



Perhaps describe different aspects of de Sitter?

### Black Holes in de Sitter spacetime



### Schwarzschild-de Sitter



[Nariai '50] 11



#### 



See e.g. [Castro, Mariani, Toldo '22] or [Climent, Hennigar, Panella, Svesko] <sup>13</sup>

# Essence of log-T corrections



### Setting up the Euclidean path integral

Consider Einstein-Hilbert-Maxwell action:

$$Z = \int \left[ Dg 
ight] \left[ DA 
ight] e^{-I[g,A]} \,, \qquad I[g,A] = I_{
m EM} + I_{
m boundary} + I_{
m gauge} \,.$$

Dirichlet Metric, Neumann Gauge field; transeverse-traceless + Lorenz

| Background and fluctuations respectively: | $g=ar{g}+h$ | $A=\bar{A}+\frac{1}{2}a$ | $Z pprox Z_0 = \exp\left(-I[ar{g},ar{A}] ight)$ |
|-------------------------------------------|-------------|--------------------------|-------------------------------------------------|
|-------------------------------------------|-------------|--------------------------|-------------------------------------------------|

Which up to second order we can collect as:  $Z \approx \exp\left(-I[\bar{g},\bar{A}]\right) \int [Dh][Da] \exp\left[-\int d^4x \sqrt{\bar{g}} \left(h^*D[\bar{g},\bar{A}]h + a^*P[\bar{g},\bar{A}]a + \left(h^*O_{\text{int}}[\bar{g},\bar{A}]a + \text{h.c}\right)\right)\right]$ 

[Gibbons, Hawking '77]

### Approach for evaluating the path integral



Extremal RN: the background geometry  $AdS_2 \times S^2$  will have an infinite set of zero modes due to diffeos that act on the  $AdS_2$  geometry, and diffeos on  $S^2$ , which are not removed by gauge-fixing. At zero temperature these will cause an IR divergence.

we will regularise the zero modes by slightly moving away from extremality (giving them a mass), by heating up black hole:

Dominant at low T  $\rightarrow Z_{\rm z.m.} \sim e^{\# \log T}$ 

°C 50 Importunition 40 Importunition

 $Z_{\rm n.z.m} \sim e^{T^{a>0}}$ 

See e.g. [Charles, Larsen'20][Iliesiu, Turiaci'21][Heydeman, Ilisesiu, Turiaci, Zhao'22][Iliesu, Murthy, Turiaci '22][Maulik, Pando Zayas, Ray, Zhang'24]

#### How to get to Log-T? Characterisation of zero modes

Geometry at extremality

 $\mathcal{M} \times S^2$ ,

Conventions for background geometry

$$ar{g}_{\mu
u} \mathrm{d}x^{\mu} \mathrm{d}x^{
u} = ar{g}_{ab} \mathrm{d}x^{b} \mathrm{d}x^{a} + ar{g}_{ij} \mathrm{d}x^{i} \mathrm{d}x^{j} ,$$
  
 $ar{A} = ar{A}_{a} \mathrm{d}x^{a} ,$ 

Gauge transformations that are not fixed by gauge fixing but annihilated by D and P:

Fluctuations generated by diffeo:  $h_{ab} = \mathcal{L}_{\zeta} \bar{g}_{ab}$ ,  $\zeta = \zeta^a \partial_a$ .  $\zeta^a \zeta_a \to \infty$ .

Inner product to be finite and nonzero:  $\langle h^{(k)} | h^{(k')} \rangle \equiv \int d^4x \sqrt{\bar{g}} (h_{\mu\nu}{}^{(k)})^* \bar{g}^{\mu\alpha} \bar{g}^{\nu\beta} h^{(k')}_{\alpha\beta}$ 

Use 2d gravity techniques to compute these modes

#### options

(i) tensor modes, which are diffeomorphisms on M.
(ii) vector modes, which correspond to diffeomorphism that deform S<sup>2</sup> along M.
(iii) U(1) gauge transformations acting on A.

### Turning the crank explicitly for tensor mode in Reissner-Nordström

Extremal charge We are now able to compute the tensor mode contribution  $ds^{2} = Q^{2}(-\sinh^{2}\eta \,dt^{2} + d\eta^{2}) + Q^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$ Explicit metric at extremality:  $h_{\mu\nu}^{(n)}dx^{\mu}dx^{\nu} = \frac{\sqrt{|n|(n^2-1)}}{2\pi} \frac{(\sinh\eta)^{|n|-2}}{(1+\cosh\eta)^{|n|}} e^{in\tau} (\mathrm{d}\eta^2 + 2i\frac{n}{|n|} \sinh\eta\,\mathrm{d}\eta\mathrm{d}\tau - \sinh^2\eta\mathrm{d}\tau^2)$ Yielding (Wick rotated):  $\frac{\delta g_{\mu\nu} dx^{\mu} dx^{\nu}}{4\pi O^3 T} = (2 + \cosh\eta) \tanh^2 \frac{\eta}{2} (d\eta^2 - \sinh^2\eta d\tau^2) + \cosh\eta (d\theta^2 + \sin^2\theta d\phi^2)$ Turning on the temperature: Recall:  $Z \approx \exp\left(-I[\bar{g},\bar{A}]\right) \int [Dh][Da] \exp\left[-\int d^4x \sqrt{\bar{g}} \left(h^* D[\bar{g},\bar{A}]h + a^* P[\bar{g},\bar{A}]a\right)\right]$  $\delta \log Z \sim -\sum_{n \ge 2} \log \langle h^{(n)} | \delta D | h^{(n)} \rangle = \log \left( \prod_{n \ge 2} \frac{16Q}{nT} \right) = \log \left( \frac{1}{64\sqrt{2\pi}} \frac{T^{3/2}}{Q^{3/2}} \right)$ Low temperature zero mode part:

#### Log-T corrections for near extremal RN

Final result (input explicit modes, zeta regularisation)

$$Z_{\text{low-}T} \sim \int \mathcal{D}h_{\text{z.m.}} \mathcal{D}a_{\text{z.m.}} e^{-\delta\Lambda_h(T)\langle h_{\text{z.m.}}|h_{\text{z.m.}}\rangle - \delta\Lambda_a(T)\langle a_{\text{z.m.}}|a_{\text{z.m.}}\rangle}$$



| For example for near extremal RI | Ν |
|----------------------------------|---|
|----------------------------------|---|

| Near-horizon        | Partition function                      | Tensor                     | modes          | Vector                     | modes          | U(1) n                     | nodes          |
|---------------------|-----------------------------------------|----------------------------|----------------|----------------------------|----------------|----------------------------|----------------|
| geometry            | $\mathcal{Z}_{\mathrm{low}\;T} \propto$ | $\langle h^0   h^0  angle$ | $\lambda_h(T)$ | $\langle h^0   h^0  angle$ | $\lambda_h(T)$ | $\langle a^0   a^0  angle$ | $\lambda_a(T)$ |
| $EAdS_2 \times S^2$ | $T^3$                                   | +                          | +              | +                          | +              | +                          | 0              |

# De Sitter black holes and log-T corrections





| Decoupling limits | Near-horizon        | on Partition function                   |  | Tensor modes               |                | vs Vector modes            |                | U(1) modes                 |                |
|-------------------|---------------------|-----------------------------------------|--|----------------------------|----------------|----------------------------|----------------|----------------------------|----------------|
| of $RN-dS_4$      | geometry            | $\mathcal{Z}_{\mathrm{low}\;T} \propto$ |  | $\langle h^0   h^0  angle$ | $\lambda_h(T)$ | $\langle h^0   h^0  angle$ | $\lambda_h(T)$ | $\langle a^0   a^0  angle$ | $\lambda_a(T)$ |
| Cold              | $EAdS_2 \times S^2$ | $T^{7/2}$                               |  | +                          | +              | +                          | +              | +                          | +              |
|                   | 1                   |                                         |  |                            |                |                            |                | 1                          | 1              |

|  | vanilla RN $EAdS_2 \times S^2$ $T^3$ + + + |
|--|--------------------------------------------|
|--|--------------------------------------------|

# Nariai results



### Nariai results

$$Z_{\text{low-}T} \sim \int \mathcal{D}h_{\text{z.m.}} \mathcal{D}a_{\text{z.m.}} e^{-\delta\Lambda_h(T)\langle h_{\text{z.m.}}|h_{\text{z.m.}}\rangle - \delta\Lambda_a(T)\langle a_{\text{z.m.}}|a_{\text{z.m.}}\rangle}$$





$$Z_{\text{low T}} \sim \exp\left(-I(\overline{g}, \overline{A}) + \#\log T\right)$$

| Decoupling limits                   | Tensor modes                            |                       | Vector m                                | odes                  | Gauge modes                                |                       |  |
|-------------------------------------|-----------------------------------------|-----------------------|-----------------------------------------|-----------------------|--------------------------------------------|-----------------------|--|
| Decoupling mints                    | $\langle h_{ m z.m.} h_{ m z.m.} angle$ | $\delta \Lambda_h(T)$ | $\langle h_{ m z.m.} h_{ m z.m.} angle$ | $\delta \Lambda_h(T)$ | $\langle a_{ m z.m.}   a_{ m z.m.}  angle$ | $\delta \Lambda_a(T)$ |  |
| RNdS <sub>4</sub> Cold              | +                                       | +                     | +                                       | +                     | +                                          | +                     |  |
| $SdS_4$ Nariai                      | +                                       | _                     | _                                       | _                     |                                            |                       |  |
| ${ m SdS}_4$ Nariai (Complexified)  | +                                       | +                     | _                                       | +                     |                                            |                       |  |
| $\mathrm{RNdS}_4$ Nariai            | +                                       | _                     | _                                       | ±                     | _                                          | +                     |  |
| ${ m RNdS_4}$ Nariai (Complexified) | +                                       | +                     | +                                       | +                     | _                                          | _                     |  |

| Decoupling limits | Near-horizon                                                      | Partition function        |  |  |
|-------------------|-------------------------------------------------------------------|---------------------------|--|--|
| Decoupling mints  | geometry                                                          | $Z_{	ext{low-}T} \propto$ |  |  |
| $RNdS_4 Cold$     | $\mathrm{EAdS}_2 \times S^2$                                      | $T^{7/2}$                 |  |  |
| $SdS_4$ Nariai    | $-\mathrm{EAdS}_2 \times S^2$                                     | unresolved                |  |  |
| $SdS_4$ Nariai    | $EAdS_{-} \times (-S^{2})$                                        | $T^3$                     |  |  |
| (Complexified)    | $\operatorname{EAUS}_2 \times (-D)$                               |                           |  |  |
| $RNdS_4$ Nariai   | $(-\mathrm{EAdS}_2) \times S^2$                                   | unresolved                |  |  |
| $RNdS_4$ Nariai   | $(\mathbf{F}\mathbf{\Lambda}\mathbf{dS}_{1}\times\mathbf{S}^{2})$ | unresolved                |  |  |
| (Complexified)    | $-(\text{EAus}_2 \times S)$                                       | unresorveu                |  |  |

- Negative norms, eigenvalues
- Complements JT predictions; tensor modes not enough
- [Maldacena, Turiaci, Yang '19][Cotler, Jensen Maloney'19]

- Log T in Static patch?
- DHS; away from near horizon
- ultracold limit?

[Denef, Hartnoll, Sachdev '10] e.g. [Kapec, Law, Toldo '24][Arnaudo, Bonelli, Tanzini '24]

# Blank page

# Back up slides

### Identifying the quadratic contributions

Let us take a step back and consider in detail:  
$$Z \approx \exp\left(-I[\bar{g},\bar{A}]\right) \int [Dh][Da] \exp\left[-\int d^4x \sqrt{\bar{g}} \left(h^* D[\bar{g},\bar{A}]h + a^* P[\bar{g},\bar{A}]a + \left(h^* O_{\text{int}}[\bar{g},\bar{A}]a + \text{h.c}\right)\right)\right]$$

photon  $a^*_{\mu} P^{\mu
u} a_{
u} = -rac{1}{32\pi} a^*_{\mu} \left( ar{g}^{\mu
u} ar{\Box} - ar{R}^{\mu
u} 
ight) a_{
u}$ 

mixed 
$$h^*_{\alpha\beta} \, O^{lphaeta\mu}_{
m int} \, a_\mu = rac{1}{16\pi} h^*_{lphaeta} \left( 4 ar{g}^{lpha[\mu} ar{F}^{
u]eta} + ar{F}^{\mu
u} ar{g}^{\mu
u} 
ight) 
abla_\mu a_
u$$

Infinitely many eigenvalues in this determinant are zero or negative

#### Turning the crank explicitly for tensor mode in Reissner-Nordström



see e.g. [Banerjee, Salaa '23]

# Blank page