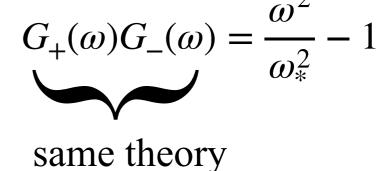


Spectral duality relation in thermal CFTs

Mile Vrbica

New Insights in Black Hole Physics from Holography IFT Madrid, June 18th, 2025

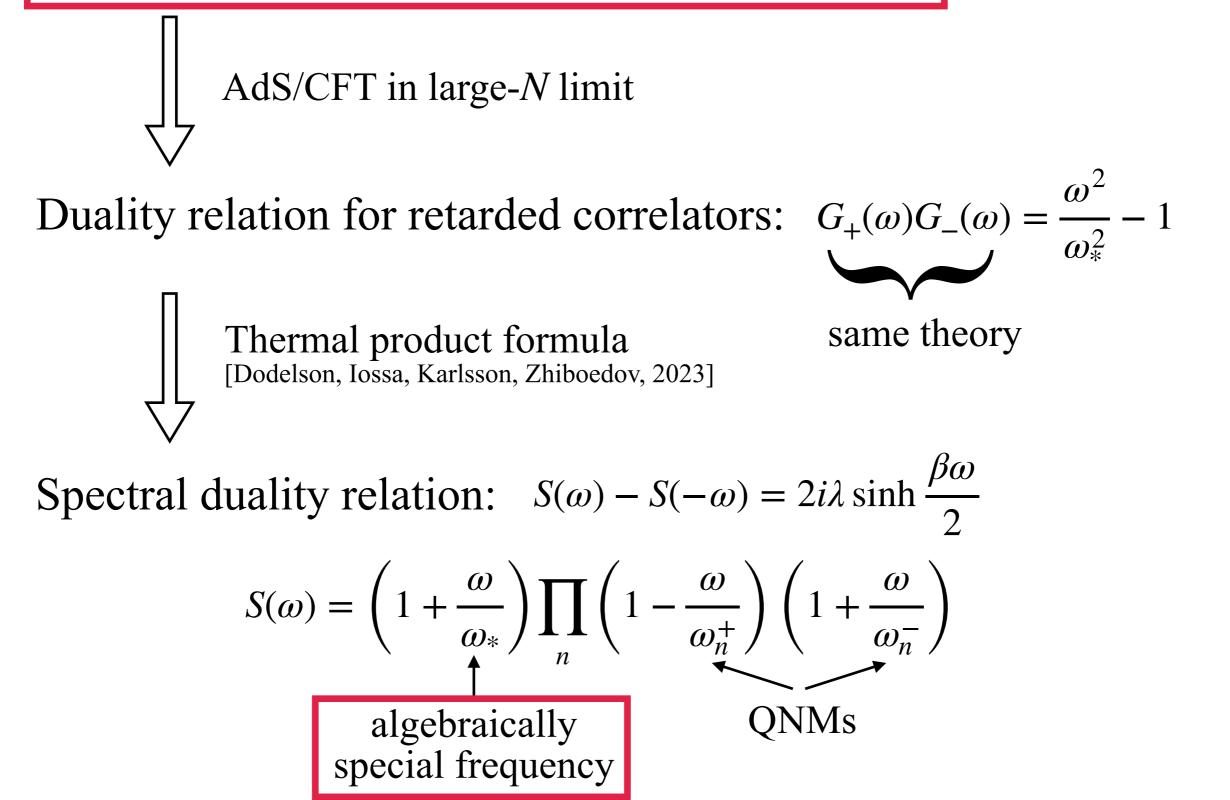
Based on Sašo Grozdanov, M.V.: 2406.19790 2505.14229


Recap

Dualities of perturbations around 4d black holes

Duality relation for retarded correlators: $G_{+}(\omega)G_{-}(\omega) = \frac{\omega^{2}}{\omega_{*}^{2}} - 1$

Thermal product formula [Dodelson, Iossa, Karlsson, Zhiboedov, 2023]



Spectral duality relation: $S(\omega) - S(-\omega) = 2i\lambda \sinh \frac{\beta \omega}{2}$

$$S(\omega) = \left(1 + \frac{\omega}{\omega_*}\right) \prod_n \left(1 - \frac{\omega}{\omega_n^+}\right) \left(1 + \frac{\omega}{\omega_n^-}\right)$$

algebraically
special frequency
$$QNMs$$

Recap

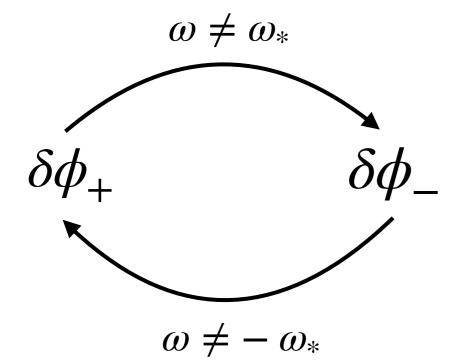
Dualities of perturbations around 4d black holes

Algebraically special solutions

Space is algebraically special if $C_{\mu\nu\rho[\sigma}l_{\alpha]}l^{\nu}l^{\rho} = 0$ for some null l^{μ} .

- all static black holes are algebraically special
- algebraically special perturbations only possible with $\omega = \pm \omega_*$

Einstein-Maxwell + massless scalar:


$$\Rightarrow \text{Schwarzschild: } \omega_* = i \frac{k^4}{12M}$$

$$\Rightarrow \text{Reissner-Nordström: } \omega_* = i \frac{k^4/6M}{1 \pm \sqrt{1 + 4Q^2k^2/9M^2}}$$

$$\Rightarrow \text{Linear-axion model: } \omega_* = i \frac{k^4 + k^2m^2}{12M}$$

- On the boundary: $G_+(\omega_*) = G_-(-\omega_*) = 0$
- Classifies pole-skipping points

Bulk Dualities

Background:
$$ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2\gamma_{AB}dx^Adx^B$$

maximally symmetric $2d$ metric

Linear perturbations (Einstein-Maxwell): $g \rightarrow g + \delta g, A \rightarrow A + \delta A$ We can map between solutions of the channels:

Darboux transformations/SUSY QM

 \mathbf{r}

'Mixed' electric-magnetic-type duality

These transformations leave background alone

Self-dual limit

 $\omega_* \to \infty$

- Q → 0: Maxwell/electric-magnetic duality [Herzog, Kovtun, Sachdev, Son, 2007]
- M \rightarrow 0 (pure dS/flat/AdS): graviton electric-magnetic duality [Leigh, Petkou, 2003]
- self-dual limit of the linear axion model: emergent $SL(2,\mathbb{R}) \times SL(2,\mathbb{R})$ [Davison, Goutéraux, 2014]

This limit is holographically understood: particle-vortex self-duality and its $T^{\mu\nu}$ analogue

Summary

- Such dualities are a very special property of 4d gravity
- Controlled by the algebraically special frequency ω_*
- Their geometry is now better understood
- The extent of generality unclear