Pseudospectra of CMMs

David García Fariña

Based on

2407.06104

DGF, K. Landsteiner, P.G. Romeu and P. Saura-Bastida

2407.04372

D. Areán, DGF and K. Landsteiner

New Insights in Black Hole Physics from Holography

June, 2025

David García Fariña (IFT)

Pseudospectra of CMMs

Pseudospectra of QNMs

SAdS₅ black brane

$$ds^{2} = \frac{1}{z^{2}} \left(-f(z)dt^{2} + \frac{dz^{2}}{f(z)} + d\vec{x}^{2} \right) \qquad f(z) = 1 - z^{4}$$

QNMs of a massless scalar field: solutions of $\nabla^2 \phi = 0$ with fixed (ω, k) that are

- Infalling at z = 1
- Normalizable at z = 0 (sourceless)

QNMs as eigenfunctions of a Non-Hermitian Operator

By choosing to work in regular coordinates coordinates

$$ds^{2} = \frac{1}{z^{2}} \left(-fd\tau^{2} + (2-f)dz^{2} - 2(1-f)d\tau dz + d\vec{x}^{2} \right)$$

where

Infalling bcs
$$\Leftrightarrow$$
 Regularity at $z = 1$

we can write $abla^2 \phi = 0$ as

$$\omega\begin{pmatrix}\phi\\\psi\end{pmatrix} = L\begin{pmatrix}\phi\\\psi\end{pmatrix} = \begin{pmatrix}0 & i\\\mathcal{L}_1 & \mathcal{L}_2\end{pmatrix}\begin{pmatrix}\phi\\\psi\end{pmatrix}$$

 ψ is an auxiliary field ($\psi = -i\omega\phi$)

QNFs $\Leftrightarrow \sigma(L)$

QNMs as eigenfunctions of a Non-Hermitian Operator

Defining an inner product such that the norm matches the energy of the QNM evaluated on a τ = constant surface

$$L^{\dagger} = L + \# \,\delta(1-z)$$

Horizon
$$\Rightarrow L^{\dagger} \neq L$$

Spectral (In)stability of Non-Hermitian Operators

 $L^{\dagger} \neq L \Rightarrow \sigma(L)$ can be unstable

Even if ||V|| is small $\sigma(L + V)$ can look very different from $\sigma(L)$

Spectral (In)stability of Non-Hermitian Operators

Pseudospectrum

$$\begin{split} \sigma_{\varepsilon}(L) &= \{ z \in \mathbb{C} : z \in \sigma(L+V) , \|V\| < \varepsilon \} \\ &= \{ z \in \mathbb{C} : \|(L-z)^{-1}\| < 1/\varepsilon \} \end{split}$$

 ε -pseudospectra allow us to quantify the spectral (in)stability from the knowledge of the resolvent of the operator

Pseudospectrum of QNFs (k = 0)

[D. Areán, DGF and K. Landsteiner (2023)]

- We truncate Hilbert space by discretizing in a grid of size N
- QNMs are unstable
- Instability increases for higher QNMs

Poles of retarded correlators can change a lot under small perturbations of the theory

[V. Boyanov et al. (2023)]

[Warnick (2013)]

Lack of convergence is a fundamental feature of the problem

The spectrum of L in the Hilbert space of functions with **finite energy** is given by

QNFs + continuum with $\Im \omega < -\lambda_c$

 $\sigma(L) = \lim_{\epsilon \to 0} \lim_{N \to \infty} \sigma_{\epsilon}(L_N)$

David García Fariña (IFT)

Pseudospectra of CMMs

June, 2025

David García Fariña (IFT)

Pseudospectra of CMMs

June, 2025

Physical Picture

Lack of convergence \Rightarrow Breakdown of GR EFT

We can either

- Improve region of convergence by adding higher derivative terms to the norm in an EFT-like expansion [Warnick (2013); V. Boyanov et al. (2023)]
- Keep the grid and consider it as a cutoff telling us the smallest scale we can resolve within our EFT

Takeaway:

 QNFs are unstable, and their instability increases with N ⇒ QNFs can be easily displaced by a perturbation, and the effect of the perturbation increases the more localized it is

What else can we do?

Can we find another observable less sensitive to the cutoff?

Lack of convergence is related to modes with $\Im \omega < -\pi T$. Thus, we want a similar object where we can easily eliminate those modes

What else can we do?

Can we find another observable less sensitive to the cutoff?

Lack of convergence is related to modes with $\Im \omega < -\pi T$. Thus, we want a similar object where we can easily eliminate those modes

We can study the pseudospectrum of CMMs

Pseudospectrum of CMMs

What are CMMs?

We rewrite the original eigenvalue problema for $\omega(k)$ as

$$k\begin{pmatrix}\phi\\\tilde{\psi}\end{pmatrix} = \tilde{L}\begin{pmatrix}\phi\\\tilde{\psi}\end{pmatrix} = \begin{pmatrix}0 & -i\\\tilde{\mathcal{L}}_1 & \tilde{\mathcal{L}}_2\end{pmatrix}\begin{pmatrix}\phi\\\tilde{\psi}\end{pmatrix}$$

where now we compute the $\mathbb{C}LMs \ k(\omega)$ and the associated $\mathbb{C}MMs$ at fixed $\omega \in \mathbb{R}$

As for QNMs, we define an inner product such that the norm of a $\mathbb{C}\mathsf{M}\mathsf{M}$ is its energy

Results for $\omega = 10$

Pseudospectrum is convergent CLMs are unstable

- Poles k(ω) are susceptible to migrating a lot for small perturbations of the theory.
- CLMs are more spectrally stable than QNFs

Results for $\omega = 0$

Pseudospectrum is convergent CLMs are stable

$$\tilde{L}(\omega = 0) = \tilde{L}^{\dagger}(\omega = 0)$$

 At ω = 0 CLMs are dual to glueball masses of the Hermitian theory resulting from the dimensional reduction on the euclidean thermal circle [Witten, 1998]

David García Fariña (IFT)

Conclusions

Main Results

- Non-convergence of pseudospectrum of QNMs is a physical phenomenon
- Pseudospectrum of CMMs converges
- CLMs are less unstable than QNFs
- CLMs are stable at $\omega = 0$ in agreement with dual glueball interpretation

Thanks For Your Attention!

Extra Slides

Regular Coordinates

Definition of regular coordinates

Explicit forms of the operators

Operator *L*

$$\omega\begin{pmatrix}\phi\\\psi\end{pmatrix} = L\begin{pmatrix}\phi\\\psi\end{pmatrix}$$
$$\downarrow$$
$$\omega\phi = i\psi$$

$$\omega\psi = -i\left(\frac{k^2}{2-f}\phi + \frac{3f-zf'}{z(2-f)}\phi' - \frac{f}{2-f}\phi''\right) + i\left(\frac{3-3f+zf'}{z(2-f)}\psi - \frac{1-f}{2-f}\psi'\right)$$

More on Pseudospectra

The three definitions of *ɛ*-pseudospectrum

[Trefethen & Embree, 2005]

• Resolvent:

$$\sigma_{\mathcal{E}}(\mathcal{L}) = \{ z \in \mathbb{C} : \| (\mathcal{L} - z)^{-1} \| < 1/\varepsilon \}$$

• Perturbative:

$$\sigma_{\mathcal{E}}(\mathcal{L}) = \{ z \in \mathbb{C}, \exists V, \|V\| < \varepsilon : z \in \sigma(\mathcal{L} + V) \}$$

• Pseudoeigenvalue:

$$\sigma_{\mathcal{E}}(\mathcal{L}) = \left\{ z \in \mathbb{C}, \exists u^{\mathcal{E}} : \left\| (\mathcal{L} - z)u^{\mathcal{E}} \right\| < \varepsilon \left\| u^{\mathcal{E}} \right\| \right\}$$

Operator norm $\|V\| = \max \frac{\|Vu\|}{\|u\|}$

Condition Numbers

[Trefethen & Embree, 2005]

Test non-normality through orthogonality of left- and right-eigenvectors

- $\kappa_i = 1 \Rightarrow$ Normal/Stable eigenvalue
- $\kappa_i > 1 \Rightarrow$ Non-normal/Unstable eigenvalue

$$\lambda_i(\varepsilon) - \lambda_i | \le \varepsilon \kappa_i$$

$$\kappa_i = \frac{\|\nu_i\| \cdot \|u_i\|}{|\langle \nu_i, u_i \rangle|}$$

$$Lu_i = \omega_i u_i$$
$$L^{\dagger} v_i = \overline{\omega_i} v_i$$

CLMs vs QNFs

Holographic perspective: CLMs vs QNFs

CLMs

poles $k(\omega)$ of the retarded propagator at fixed real ω QNFs

poles $\omega(k)$ of the retarded propagator at fixed real k

CLMs describe absorption QNFs describe thermalization

Holographic perspective: CLMs vs QNFs

David García Fariña (IFT)

Pseudospectra of CMMs

June, 2025

Holographic perspective: CLMs vs QNFs

David García Fariña (IFT)

Pseudospectra of CMMs

June, 2025