

Established by the European Commission

Quasinormal modes of nonthermal fixed points

Matisse De Lescluze Based on 2502.01622 with Michal P. Heller

Motivation

- Understand thermalization in quantum many body systems
- AdS/CFT: thermalization described by black hole QNMs

• Attractors: hydro, non-thermal

Can we identify QNMs that describe approach to **nonthermal attractors**?

Holographic theories vs kinetic theory

Holography	Kinetic theory
Strongly coupled systems	Weakly coupled/dilute systems → Quasi-particles
Spacetime metric, fields	Distribution function: $f(t, p)$
Einstein eqs	Boltzmann eq: $\partial_t f(t, p) = -C[f](t, p)$
Infalling BC at horizon + normalizable at bdry ⇒ QNMs	Boltzmann eq is dissipative ⇒ QNMs
Single poles	Branch-cuts D. Moore [1803.00736] S. Rocha, Danhoni, Ingles, S. Denicol, Noronha [2404.04679]

Nonthermal fixed points

- Far from equilibrium phenomenon
- Cold atom experiments, ultra-relativistic heavy-ion collisions, early universe dynamics
- Overoccupation
 + conservation laws

Gazo, Karailiev, Satoor, Eigen, Gałka, Hadzibabic [2312.09248] 3/11

Self-similarity

$$f(t,p) = \left(\frac{t}{t_{ref}}\right)^{\alpha} f_s \left(\left(\frac{t}{t_{ref}}\right)^{\beta} p \right)$$

$$A(t) \qquad B(t)$$

• Universality

• Static frame: $\bar{p} = B(t)p$ \rightarrow analogous to static BH spacetime

 $A(t)^{-1}f(t,\bar{p}/B(t)) = f_s(\bar{p}) + \delta f(t,\bar{p})$

QNM equation

- Time dependent operators appear as $B(t)\partial_{B(t)}\delta f(t,\bar{p})|_{\bar{p}=const}$
- Equation dictates

$$\delta f(t,\bar{p}) = B(t)^{i\,\Omega} \delta f_{\Omega}(\bar{p})$$

Power law in time! \neq exponential for BHs/thermal state

• QNMs can be calculated from eigenvalue equation

$$i\Omega\delta f_{\Omega}(\bar{p}) = \hat{O}\delta f_{\Omega}(\bar{p})$$

• Pseudo-spectral method A. Janik, Plewa, Soltanpanahi, Spaliński [1503.07149]

Results

- Gluonic system dominated by small angle scatterings
- Discrete spectrum \Leftrightarrow BH spectrum
- Stable

Christmas tree structure

• Varying IR cut-off

Pseudo-spectra

- Stability of QNM spectra
- Deeper \Rightarrow less stable

Arean, Garcia-Fariña, Landsteiner [2307.08751] Cownden, Pantelidou, Zilhão [2312.08352]

8/11

Mode collisions

• Observed/studied in holographic setting

Grozdanov, K. Kovtun, O. Starinets, Tadić [1904.01018]

• Modes settle on zero-cut off result after mode collision

Conclusions

- Powerlaw decay \neq exponential
- Discrete spectrum \Leftrightarrow BHs

Outlook

- Verify in cold atom experiments
- More realistic kinetic theories
- Hydrodynamic description
 near NTFPs
- NTFPs in holography

