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* This work: fundamental origin and new relations for AdS black holes
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» Klein-Gordon @, mg = A(A —2) on non-rotating BTZ ds* = iz (—(1 — z%)dt* - q : dz* + d<02>
Z

27
o Starting point: KG product on complex radial contour I (a,b)gg =1 J do J dz ) a*ad.b
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— Avoid QNM branch point singularities
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— Schwinger-Keldysh contour 1n dual QFT
(stmilar to [Glorioso, Crossley, Liu "18])
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» Given # = id, : standard orthogonality relations (i, v;) ¢ & &,

AV, = )V, right eigenfunction

H ke THES a)i*ul. left eigenfunction ( (# "xaq, b)xGg = (a4, ZD)yc )

CFTy

» Normalisability at the boundaries = Z 'k =% 0+ ie ::D
O
0 — i€ “h

— (V, vj) v 1s not diagonal: zero norms when i = CFT, -
 Implement CPT operator on left slot (v, vj) = (CPTv, vj) kG & 0;;

* We prove that regular, normalisable eigenfunctions of # on I are QNMs and anti-QNMSs
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Summary

* Constructed a bilinear form under which QNMs (and anti-QNMs) are orthogonal to each other

(+,-)=(CPT-,-)r. onacomplex radial contour, [’

— | needed to avoid singularities at horizon

— (CPT maps eigenfunction with @ 1nto eigenfunction with @™ (QNM to anti-QNM and viceversa)

— Fundamental origin in right / left eigenfunction orthogonality for ‘self-adjoint’ #
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 Generalisation to wide class of AdS black holes

« Numerical tests for SAdS, black branes QNMs

* Completeness: not a self-adjoint Sturm-Liouville problem

+ More general than KG. Only need -, - ), on I' such that #'e = #

€.g. ‘energy norms’




Thank you!



A. Generalisation

* Extended to wide class of AdS black holes

1 dz?
ds? = — | —f(z)dt* + + do?
! ( foar+ 4 )

» KG starting product:

<>

1
By =ildo, | d 0, b
@Dk l[ B 1L sz‘lx/f(z)\/g(z) )

« Complex scalar O, m(% = A(A — d) with Hamiltonian #

H' =K




B. Eigenfunctions of # on I’

* General solution on each copy

« Normalisability + analytic continuation around z = 7,

 Polesof G, = neﬁTa)(GR — G,) are QNMs and anti-QNMs
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