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• Orthogonality relations constructed by applying discrete symmetry operations to KG

 de Sitter static patch QNMs  [Jafferis, et. al. ’13]

 Kerr QNMs  [Green, et. al. ’22] [London ’23]

• Similar constructions but disconnected

• This work: fundamental origin and new relations for AdS black holes
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Avoid QNM branch point singularities

Schwinger-Keldysh contour in dual QFT 
(similar to [Glorioso, Crossley, Liu ’18])
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• Constructed a bilinear form under which QNMs (and anti-QNMs) are orthogonal to each other

 needed to avoid singularities at horizonΓ

 maps eigenfunction with  into eigenfunction with  (QNM to anti-QNM and viceversa)CPT ω ω*

Fundamental origin in right / left eigenfunction orthogonality for ‘self-adjoint’ ℋ

  on a complex radial contour, ⟨ ⋅ , ⋅ ⟩ ≡ ⟨CPT ⋅ , ⋅ ⟩KG Γ
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• Generalisation to wide class of AdS black holes

• Numerical tests for SAdS  black branes QNMs4

• Completeness: not a self-adjoint Sturm-Liouville problem

• More general than KG. Only need   on    such that ⟨ ⋅ , ⋅ ⟩Ω Γ ℋ†Ω = ℋ

e.g. ‘energy norms’



Thank you!
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• Extended to wide class of AdS black holes 

  

• KG starting product: 

 

• Complex scalar  ,   with Hamiltonian  

 

ds2 =
1
z2 (−f(z)dt2 +

dz2

g(z)
+ dσ2

d−1)

⟨a, b⟩KG = i∫ dσd−1 ∫Γ
dz

1
zd−1 f(z) g(z)

a*∂tb

Φ m2
Φ = Δ(Δ − d) ℋ

ℋ† = ℋ
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• General solution on each copy 

  

• Normalisability + analytic continuation around  
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