Holographic timelike entanglement entropy and the black hole interior

Based on [hep-th: 2408.15752] and work in progress, with M. P. Heller and A. Serantes

Fabio Ori

New insights in black hole physics from holography Madrid, 17 June 2025

Introduction and motivation

Entanglement entropy

From quantum mechanics to holography

• $|\Psi\rangle$ pure state. Select a region A, then the reduced density matrix $\rho_A = \text{Tr}_{\bar{A}} |\Psi\rangle\langle\Psi|$. Its von Neumann entropy is the entanglement entropy: Sorkin'83

$$\mathbf{S}_{\mathbf{A}} \coloneqq -\mathrm{Tr}_{\mathbf{A}}(\rho_{\mathbf{A}}\log\rho_{\mathbf{A}})$$

Entanglement entropy

From quantum mechanics to holography

• $|\Psi\rangle$ pure state. Select a region *A*, then the **reduced density matrix** $\rho_A = \text{Tr}_{\bar{A}} |\Psi\rangle\langle\Psi|$. Its **von Neumann entropy** is the **entanglement entropy**: Sorkin '83

$$\mathbf{S}_{\mathbf{A}} \coloneqq -\mathrm{Tr}_{\mathbf{A}}(\rho_{\mathbf{A}}\log\rho_{\mathbf{A}})$$

• Given a (d - 1)-dimensional region A, find a codimension-2 extremal surface γ_A in the bulk spacetime, anchored on ∂A .

$$S_A \coloneqq \min_{\operatorname{Area}[\gamma_A]} \frac{\operatorname{Area}[\gamma_A]}{4G_N^{(d+1)}}$$

Ryu, Takayanagi '06; Hubeny, Rangamani, Takayanagi '07 **1**/7

Bulk reconstruction and new holographic probes

• Emergence of spacetime: entanglement wedge reconstruction.

Czech, Karczmarek, Nogueira, Van Raamsdonk '12; Headrick, Hubeny, Lawrence, Rangamani '14; Dong, Harlow, Wall '16

Bulk reconstruction and new holographic probes

 Emergence of spacetime: entanglement wedge reconstruction.

• Field-theoretical quantity related to the emergence of the time direction?

Bulk reconstruction and new holographic probes

 Emergence of spacetime: entanglement wedge reconstruction.

Czech, Karczmarek, Nogueira, Van Raamsdonk '12; Headrick, Hubeny, Lawrence, Rangamani '14; Dong, Harlow, Wall '16

• Field-theoretical quantity related to the emergence of the time direction?

• Especially rare are observables that probe the **black hole interior**.

Bulk reconstruction and new holographic probes

 Emergence of spacetime: entanglement wedge reconstruction.

• Field-theoretical quantity related to the emergence of the time direction?

 Especially rare are observables that probe the **black hole interior**.

 What can we say on one-sided probes of the black hole interior? The holographic dual to timelike entanglement

How do we define timelike entanglement?

Analytic continuation of the spacelike result

• CFT_2 result and its analytic continuation as $\Delta x^2 - \Delta t^2 < 0$:

Doi, Harper, Mollabashi, Takayanagi, Taki '23

NB: in this talk, we will be agnostic on the general field theory definition of timelike entanglement.

How do we define timelike entanglement?

Analytic continuation of the spacelike result

• CFT₂ result and its analytic continuation as $\Delta x^2 - \Delta t^2 < 0$:

Doi, Harper, Mollabashi, Takayanagi, Taki '23

How do we define timelike entanglement?

Analytic continuation of the spacelike result

• CFT₂ result and its analytic continuation as $\Delta x^2 - \Delta t^2 < 0$:

Doi, Harper, Mollabashi, Takayanagi, Taki '23

Geometric interpretation of timelike entropy

Complex bulk extremal surfaces

- Consider a (d 1)-dim. timelike region A.
- Find a complex codimension-2 extremal surface γ_A in a complexified bulk, anchored on ∂A (real boundary). Then:

Geometric interpretation of timelike entropy

Complex bulk extremal surfaces

- Consider a (d 1)-dim. timelike region A.
- Find a complex codimension-2 extremal surface γ_A in a complexified bulk, anchored on ∂A (real boundary). Then:

- Hatches with analytic continuation of all known closed form expressions.
- + Can be applied to **any spacetime**.

Timelike entanglement and the black hole interior

Timelike entanglement in SAdS₄

• Strip subsystem *A*. Metric:

$$ds^{2} = \frac{1}{z^{2}} \left(-f(z) dt^{2} + \frac{dx_{\parallel}^{2}}{f(z)} + d\mathbf{x}_{\perp}^{2} \right)$$
$$f(z) = 1 - \left(\frac{z}{z_{H}}\right)^{d}$$

Timelike entanglement in SAdS₄

• Strip subsystem *A*. Metric:

$$ds^{2} = \frac{1}{z^{2}} \left(-f(z) dt^{2} + \frac{dx_{\parallel}^{2}}{f(z)} + d\mathbf{x}_{\perp}^{2} \right)$$
$$f(z) = 1 - \left(\frac{z}{z_{H}}\right)^{d}$$

• New: multiple surfaces!

 Vacuumdisconnected ones probe a complexified black hole interior.

t

Interior from analytic continuation

Heller, FO, Serantes '25 (to appear)

Interior from analytic continuation

Heller, FO, Serantes '25 (to appear)

 New phase transition in spacelike entanglement! Slightly (δ) before crossing the lightcone:

Interior from analytic continuation

Heller, FO, Serantes '25 (to appear)

- **Dominant contributions** continue to timelike entropy.
- Subdominant contributions continue to the « BH interior ».

Slightly (δ) before crossing the lightcone:

Summary and outlook

- **Timelike entanglement entropy** is understood geometrically only in a **complexified bulk spacetime**.
- **One-sided** holographic probes that arise from a **phase transition in spacelike entanglement** can reach a **complexified black hole interior**.

Summary and outlook

- **Timelike entanglement entropy** is understood geometrically only in a **complexified bulk spacetime**.
- **One-sided** holographic probes that arise from a **phase transition in spacelike entanglement** can reach a **complexified black hole interior**.
- Relation to **two-sided settings**?
- Complex holographic probes: an (almost) unexplored landscape.
- *Field theoretical realisations?* Tensor networks, Gaussian fields.

Thank you!

Simplest check of the prescription: AdS₃

- Consider $A = \left[-\frac{1}{2}\Delta t, \frac{1}{2}\Delta t\right]$, at constant x = 0.
- We look for a geodesic joining two timelike-separated points at the boundary $z = \varepsilon \rightarrow 0$:

$$z(\lambda) = i \sqrt{\frac{1}{4}\Delta t^2 - \varepsilon^2} \operatorname{csch} \lambda, \qquad t(\lambda) = \sqrt{\frac{1}{4}\Delta t^2 - \varepsilon^2} \tanh \lambda$$

• The boundary conditions are at:

$$\lambda_m = \log \frac{\Delta t}{\varepsilon} + \frac{i\pi}{2} + O(\varepsilon)$$

Reλ

 $\boldsymbol{\chi}$

Z

A

 Δt

Simplest check of the prescription: AdS₃

• An interesting path:

along paths 1A and 1B: $z, t \in \mathbb{R}$; along path 2: $z, t \in i \mathbb{R}$.

t

 $\boldsymbol{\chi}$

Ζ

A

 Δt

Simplest check of the prescription: AdS₃

• Another example: along paths 1A and 1B: $z, t \in \mathbb{R}$; along paths 2A and 2B: z, t = const; along path 3: $z, t \in \mathbb{R}$.

Vaidya spacetime in 2+1 dimensions

• Metric and mass-function:

$$ds^{2} = \frac{-(1 - m(v) z^{2}) dv^{2} - 2dv dz + dx^{2}}{z^{2}}$$

$$m(v) = \frac{\alpha}{2}(1 + \tanh \gamma v)$$

• It represents the formation of a black brane of temperature $T = \sqrt{\alpha}/2\pi$ on a timescale $1/\gamma$ by the gravitational collapse of a shell of null dust.

An exactly solvable timelike quench

- **Thin-shell** limit in AdS₃-Vaidya: analytically solvable.
- The shell is defined by v = 0 (matching at real v). For a region $A = [t_C - \Delta t/2, t_C + \Delta t/2]$ we have:

$$S_{A}^{(T)} = i\pi + \begin{cases} 2\log(\Delta t), & t_{C} < -\Delta t/2 \\ 2\log\left[\frac{2}{r_{H}}\sinh\left(\frac{r_{H}(2t_{C} + \Delta t)}{4}\right) - \cosh\left(\frac{r_{H}(2t_{C} + \Delta t)}{4}\right)\left(t_{C} - \frac{\Delta t}{2}\right)\right] & -\Delta t/2 < t_{C} < \Delta t/2 \\ 2\log\left[\frac{2}{r_{H}}\sinh\left(\frac{r_{H}}{\Delta t}\right)\right] & t_{C} > \Delta t/2 \end{cases}$$

Balasubramanian, Bernamonti, Craps, Keränen,

Keski-Vakkurif, Müller, Thorlacius, Vanhoofd '12

 (\mathbf{T})

 Δt

 Δt

Crosscheck of complex geodesics

Timelike entanglement in SAdS₄

 Pick the surface with minimal real part of the area?

Prescription P1

$$S_{A}^{(T)} = \min_{\substack{\text{Re Area}[\gamma_{A}^{\mathbb{C}}]}} \frac{\text{Area}[\gamma_{A}^{\mathbb{C}}]}{4G_{N}^{(d+1)}}$$

t

 x_i

A

Timelike entanglement in SAdS₄

 $\mathcal{A}_{\mathrm{reg}} = \lim_{\epsilon o 0} \left(\mathcal{A} - rac{2}{\epsilon}
ight)$

- Problem: the UV/IR correspondence is violated!
- Possible resolution:

Prescription P2

$$S_A^{(T)} = \frac{\operatorname{Area}[\gamma_A^{\mathbb{C}}]}{4G_N^{(d+1)}}$$

for a $\gamma_A^{\mathbb{C}}$ such that **upon analytic** continuation $S_A^{(T)}$ reduces to standard entanglement entropy.

Towards a field theory definition

• Connection with « temporal entanglement » in tensor networks:

Bañuls, Hastings, Verstraete '09; Hastings, Mahajan '23; Carignano, Marimón, Tagliacozzo '23

Towards a field theory definition

• Tensor network evaluation of timelike entanglement entropy:

Carignano, Marimón, Tagliacozzo '23

 Can we do more? Quenches and time-dependent backgrounds can be explored with tensor networks.

Foligno, Zhou, Bertini '23