Krylov spread complexity as holographic complexity beyond JT gravity

based on 2412.17785 with M.P. Heller and J. Papalini

New Insights in Black Hole Physics from Holography @IFT - Tim Schuhmann - 17.06.25

Bdy setup: Double-scaled SYK model

$$H_{\text{SYK}} = i^{p/2} \sum_{1 \le i_1 < \dots < i_p \le N} J_{i_1 \cdots i_p} \psi_{i_1} \cdots \psi_{i_p} \psi_{i_p} \cdots \psi_{i_p} \psi_{$$

quantum system of chord states $|n\rangle$ governed by transfer matrix \hat{T}

(N fermions with p-body interaction) V_{i_p} , $N, p \to \infty$ while $\left|\log q\right| = p^2/N$ fixed

 \Rightarrow Coupling averaged multi-point functions of H_{SYK} computable via auxiliary [Berkooz et al. '18]

Bdy setup: Double-scaled SYK model

$$H_{\text{SYK}} = i^{p/2} \sum_{1 \le i_1 < \dots < i_p \le N} J_{i_1 \cdots i_p} \psi_{i_1} \cdots \psi_{i_p} \psi_{i_p} \cdots \psi_{i_p} \psi_{$$

 \Rightarrow Coupling averaged multi-point functions of H_{SYK} computable via auxiliary quantum system of chord states $|n\rangle$ governed by transfer matrix \hat{T} [Berkooz et al. '18]

Bulk dual: Sine-dilaton gravity [Blommaert, Mertens, Yao, Papalini, Levine, Parmentier '23 '24 '25]

Ad: Thomas Mertens' talk on Thursday $\int \mathscr{D}g \mathscr{D}\Phi \exp\left(\frac{1}{2 \log q}\right) d$

 \Rightarrow H_{grav} from canonical quantization of E_{ADM} coincides with DSSYK \hat{T}

 \Rightarrow Holographic dictionary relates bulk length with chord nr. $\hat{L} = 2 \log q \hat{n}$

(N fermions with p-body interaction) V_{i_n} , $N, p \to \infty$ while $\left|\log q\right| = p^2/N$ fixed

$$d^2x\sqrt{g}\left(\Phi R + \sin(2\Phi)\right) + bdy.$$

Krylov spread complexity: Expectation value of the position of a state $|\psi(t)\rangle$

$$C_{K}(t) = \sum_{n=0}^{\infty} n |\langle K_{n} | \psi(t) \rangle|^{2}, |\psi(t)\rangle$$

spreading over 'minimal basis of evolution / Krylov basis' $|K_n\rangle$ [Balasubramanian et al. '22]

$= e^{-iHt} |R\rangle, |K_n\rangle = orthonorm(\{H^n |R\rangle\})$

Krylov spread complexity: Expectation value of the position of a state $|\psi(t)\rangle$ spreading over 'minimal basis of evolution / Krylov basis' $|K_n\rangle$ [Balasubramanian et al. '22]

$$C_{K}(t) = \sum_{n=0}^{\infty} n |\langle K_{n} | \psi(t) \rangle|^{2}, |\psi(t)\rangle$$

KEY RESULT: Sine-dilaton length $\langle \hat{L} \rangle$ equals DSSYK Krylov complexity $C_K(t)_{\beta}$

$\left[-\partial_{\Delta}(2pt.fn)\right]_{\Delta=0} = \langle \hat{L} \rangle = C_{K}(t)_{\beta}$

valid @finite temperature (β) & (disk) quantum level (q) | [lliesiu, Mezei, Sarosi '22]

$= e^{-iHt} |R\rangle, |K_n\rangle = orthonorm(\{H^n |R\rangle\})$

Krylov spread complexity: Expectation value of the position of a state $|\psi(t)\rangle$ spreading over 'minimal basis of evolution / Krylov basis' $|K_n\rangle$ [Balasubramanian et al. '22]

$$C_{K}(t) = \sum_{n=0}^{\infty} n |\langle K_{n} | \psi(t) \rangle|^{2}, |\psi(t)\rangle$$

KEY RESULT: Sine-dilaton length $\langle \hat{L} \rangle$ $\langle \hat{L} \rangle = \left[-\partial_{\Delta} (2pt \cdot fn) \right]_{\Delta=0} = -\partial_{\Delta} \left[Z_{\beta}^{-1} - \partial_{\Delta} \left[2q^{-1} \right]_{\beta} \right]$ $= \left| \log q^{2} \right| \sum n \left| \langle n | Z \right|_{\beta} \right|$ @ $\beta \ge 0 \& 0 \le q \le 1 \mid (2\text{-par. gen. of [F]})$

$= e^{-iHt} |R\rangle, |K_n\rangle = orthonorm(\{H^n |R\rangle\})$

equals DSSYK Krylov complexity
$$C_K(t)$$

 $\frac{1}{L} = 0 |e^{-\tau \hat{H}_{grav}} e^{-\Delta \hat{L}} e^{-(\beta - \tau) \hat{H}_{grav}} |L = 0\rangle]$
 $Z_{\beta}^{-1/2} e^{-i\hat{T}(t - i\beta/2)} |0\rangle |^2 = |\log q^2 |C_K(t)_{\beta}$
Rabinovici et al. '23] = $(\beta \to 0, q \to 1)$ case

Choice of reference state $|R\rangle$

Two inequivalent options for combined Lorentzian + Euclidean evolution

$$C_K$$
 for $e^{-iT(t-i\beta/2)}|0\rangle$

 $\equiv |R\rangle$

$$\neq C_K \text{ for } e^{-iTt} e^{-\beta T/2} | 0 \rangle$$
$$\equiv | R \rangle$$

Choice of reference state $|R\rangle$

Two inequivalent options for combined Lorentzian + Euclidean evolution

$$C_{K} \text{ for } e^{-iT(t-i\beta/2)} | 0 \rangle \neq C_{K} \text{ for } e^{-iTt} e^{-\beta T/2} | 0 \rangle$$
$$\equiv | R \rangle \qquad \equiv | R \rangle$$

Starting from $\langle L \rangle$ on the gravity side, we match this

\Rightarrow Gravity demands to assign complexity also to euclidean state preparation

Our result is valid for any $q \Rightarrow$ Consistently, agrees with first quantum correction on top of the classical sine-dilaton gravity length [Bossi et al. '25] around $q \approx 1$

Our result is valid for any $q \Rightarrow$ Consistently, agrees with first quantum correction on top of the classical sine-dilaton gravity length [Bossi et al. '25] around $q \approx 1$

This talk: $e^{-iT(t-i\beta/2)}|0\rangle$

Q: Precise influence of reference state choice on bulk manifestation?

C_K specified by $H = T_{DSSYK}$, $|R\rangle = |0\rangle$

This talk:
$$e^{-iT(t-i\beta/2)}|0\rangle$$
 C_K spe

Q: Precise influence of reference state choice on bulk manifestation?

• Operator insertions in reference state: $|R\rangle = O_{\Lambda} |0\rangle$ \Rightarrow Dual manifestation as length in sine-dilation shockwave geometry?

ecified by $H = T_{DSSYK}$, $|R\rangle = |0\rangle$