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Preliminaries

• AdS/CFT correspondence provides a non-perturbative description
of quantum gravity (Maldacena 1997, Witten 1998, Gubser et al. 1998)

ZCFT(ϕ0) = ZAdS(ϕ → ϕ0)

• Within this framework, big bang/ big crunch cosmologies can
emerge from some high-energy black hole microstates (Cooper et al. 2019,

Antonini et al. 2021)

• These closed FRW cosmologies live on an End-of-the-World (ETW)
brane inside a one-sided AdS black hole
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Preliminaries

• More precisely, the (d + 1)-dimensional model consists of a bulk
Einstein–Hilbert action with a cosmological constant Λ = − d(d−1)

2L2 ,
together with a d-dimensional brane with tension T .

Sbulk = SEH + Sbrane

• We consider a vacuum black hole solution in the bulk,

ds2 = −f (r) dt2 +
dr2

f (r)
+ r2 dΣ2

k , f (r) = k +
r2

L2 − µ

rd−2 ,

with inverse temperature β ,

β =
4πrhL2

dr2
h + (d − 2)kL2

,
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Preliminaries

Penrose diagram for ETW inside an AdS-Schw. black hole

• To have an effective cosmological description on the brane, we
must take,

r̄ ≫ rh (T ≈ 1/L and
1
ℓ2

=
1
L2 − T2)
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Preliminaries

Penrose diagram for ETW inside an AdS-Schw. black hole

• The world-volume of the ETW brane is FRW cosmology with
induced metric,

ds2ETW = −dλ2 + r(λ)2dΣ2
k
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Preliminaries

Euclidean ETW brane trajectory

• The braneworld induced metric after the analytic continuation
λ → −iλ,

ds2ETW = dλ2 + r(λ)2dΣk
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Preliminaries

Euclidean construction of the ETW brane inside an AdS black hole (Almheiri et al. 2023)

• Existence of the Euclidean solution is essential to prepare the initial
state on the t = 0 slice through Euclidean time evolution
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Preliminaries

r̄ rh

Δτ < β/2 Δτ = β/2

rh
r̄

Δτ > β/2

r̄ rh

Euclidean ETW brane configurations for different turning point r̄

• The Euclidean ETW brane with tension T reaches the boundary at

τ∓ = ∓β

2
±
∫ ∞

r̄

dr
f

H√
f − H2

, H = Tr .
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Preliminaries

r̄ rh

Δτ < β/2 Δτ = β/2

rh
r̄

Δτ > β/2

r̄ rh

Euclidean ETW brane configurations for different turning point r̄

• We define ∆τ ,

∆τ =

∫ ∞

r̄

dr
f

H√
f − H2

.

• To have a well-defined Euclidean state preparation, we must have
∆τ < β/2.

• However, for pure tension braneworlds, this requirement is violated
for some region r̄ > rh for d > 2!!!
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Preliminaries

r̄ rh

Δτ < β/2 Δτ = β/2

rh
r̄

Δτ > β/2

r̄ rh

Euclidean ETW brane configurations for different turning point r̄

• This corresponds to the regime well before the effective dynamics
on the brane can be approximated by Einstein gravity (r̄ ≫ rh).

• As the brane self-intersects, it becomes disconnected from the
boundary and there is no possible way to prepare the t = 0 state
through Euclidean time evolution.

10/26



Preliminaries

r̄ rh

Δτ < β/2 Δτ = β/2

rh
r̄

Δτ > β/2

r̄ rh

Euclidean ETW brane configurations for different turning point r̄

• This corresponds to the regime well before the effective dynamics
on the brane can be approximated by Einstein gravity (r̄ ≫ rh).

• As the brane self-intersects, it becomes disconnected from the
boundary and there is no possible way to prepare the t = 0 state
through Euclidean time evolution.

10/26



Preliminaries
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Outline

• I will explain how, by adding appropriate matter on the brane, one
can resolve this issue!

• I will consider explicit matter content such as a perfect fluid, a
scalar field and an axion field, which are highly relevant to
cosmological modeling.

• I will explain that while the perfect fluid and axion can resolve the
self-intersection problem, a homogeneous scalar field can not!
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Perfect fluid on the brane

• First, we add a perfect fluid on the brane with stress-energy tensor,

Sa
b = (p+ ρ)UaUb + p δa b

• The brane trajectory is determined by solving the Israel junction
condition,

Ka
b − K δa b = 8πGSa b − (d − 1)Tδab

• Brane induced cosmological constant is,

Λbrane = − (d − 1)(d − 2)
ℓ2

where ℓ ≫ L

13/26



Perfect fluid on the brane

• First, we add a perfect fluid on the brane with stress-energy tensor,

Sa
b = (p+ ρ)UaUb + p δa b

• The brane trajectory is determined by solving the Israel junction
condition,

Ka
b − K δa b = 8πGSa b − (d − 1)Tδab

• Brane induced cosmological constant is,

Λbrane = − (d − 1)(d − 2)
ℓ2

where ℓ ≫ L

13/26



Perfect fluid on the brane

• First, we add a perfect fluid on the brane with stress-energy tensor,

Sa
b = (p+ ρ)UaUb + p δa b

• The brane trajectory is determined by solving the Israel junction
condition,

Ka
b − K δa b = 8πGSa b − (d − 1)Tδab

• Brane induced cosmological constant is,

Λbrane = − (d − 1)(d − 2)
ℓ2

where ℓ ≫ L

13/26



Perfect fluid on the brane

• From the junction condition, the brane follows the trajectory,

ṙ2 =

(
T +

8πG
d − 1

ρ

)2

r2 − f (r)

• This reduces to the brane-world Friedmann equation when
Gbraneρ ≪ 1/L2 ,(

ṙ
r

)2

≈ 16πGbraneTL
(d − 2)(d − 1)

ρ− k
r2 − 1

ℓ2
+

µ

rd

• By doing the analytic continuation, we derive the Euclidean version,(
ṙ
r

)2

≈ k
r2 +

1
ℓ2

− 16πGbraneTL
(d − 2)(d − 1)

ρ− µ

rd
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Perfect fluid on the brane

• The Euclidean ETW brane with tension T reaches the boundary at

τ∓ = ∓β

2
±
∫ ∞

r̄

dr
f

H√
f − H2

, H =

(
T +

8πG
d − 1

ρ

)
r .

• From the previous relation we find ∆τ ,

∆τ ≈ L
∫ ∞

r̄

dr
rṙ

• By demanding, rh ∼ L and r̄/ℓ > O(1), we can show that for any
d > 2,

∆τ < β/2.
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rṙ

• By demanding, rh ∼ L and r̄/ℓ > O(1), we can show that for any
d > 2,

∆τ < β/2.

15/26



Perfect fluid on the brane

• The Euclidean ETW brane with tension T reaches the boundary at

τ∓ = ∓β

2
±
∫ ∞

r̄

dr
f

H√
f − H2

, H =

(
T +

8πG
d − 1

ρ

)
r .

• From the previous relation we find ∆τ ,

∆τ ≈ L
∫ ∞

r̄

dr
rṙ
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Perfect fluid on the brane

• Thus, the asymptotic regime, r̄ ≫ rh , where the effective dynamics
on the brane approximates to Einstein gravity, is free of the
self-intersection problem.

• For a concrete example, take dust with ρ ∼ r−(d−1) ,

∆τ =
ℓL
r̄

√
π

Γ( d
d−1 )

Γ( d+1
2(d−1) )

• The key point is that the addition of brane matter enables us to
solve the turning point equation in the small L regime, and to
choose a large value of r̄, without changing rh .
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Scalar on the brane

• Next, we add a homogeneous but time-varying scalar field ϕ(λ) on
the brane

• This is a particular case of the perfect fluid analysis with,

pϕ =
1
2
ϕ̇2 − V(ϕ) , ρϕ =

1
2
ϕ̇2 + V(ϕ)

• Worldvolume scalar equation,

ϕ̈+
d − 1
r

ṙϕ̇ = −∂ϕV(ϕ).

• The Euclidean scalar equation obtained by the usual sign-flip of the
potential with respect to the Lorentzian one:

ϕ̈+
d − 1
r

ṙ ϕ̇ = ∂ϕV(ϕ) .
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Scalar on the brane

-10 -5 0 5 10
0

1
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5

Scalar and the brane profile for the potential V(ϕ) = m2ϕ2 with m2 = −1/4
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Scalar on the brane

• The cosmological friction implies,

ρ̇Eϕ = (−ϕ̈+ ∂ϕV(ϕ))ϕ̇ =
d − 1
r

ṙϕ̇2 ≥ 0

• This in turn implies that the brane takes longer time to reach the
boundary than without any scalar field on the brane,

∆τ ≥ ∆τ

• Since the pure-tension brane already suffers from
self-intersections, the addition of even a small homogeneous scalar
field further aggravates the issue.
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Scalar on the brane
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∆τ vs the brane turning point r̄
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Axion on the brane

• Although scalar field worsens the self-intersection problem, the
axions can resolve this.

• Axions are massless pseudo-scalar fields with Euclidean pressure
and energy density,

pχ =
1
2
χ̇2, ρχ =

1
2
χ̇2

• The Euclidean EOM for axion,

χ̈+
d − 1
r

ṙ χ̇ = 0.
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Axion on the brane
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Axion on the brane

• The Euclidean brane with the axion takes less time than the
pure-tension brane,

∆τ ≤ ∆τ

• We find,

∆τ =
ℓL
r̄

√
πΓ

(
1

2(d−1)

)
(2 − d)Γ

(
2−d

2(d−1)

)

• We can have ∆τ < β/2 if r̄
ℓ is sufficiently large.
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Conclusion & Future directions

• We have solved the self-intersection problem for the Euclidean ETW
brane by adding matter with a sufficiently large energy density.

• For a perfect fluid with equation of state parameter ω > −1,

∆τ ∝ ℓL
r̄

• We can avoid the self-intersection problem if r̄
ℓ > Crh

L , where C is
some order one coefficient.

• While a homogeneous scalar field on the brane does not resolve
this problem, an axion field does!
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Conclusion & Future directions

• In this work, we have only looked into the bulk picture; however, it
would be very interesting to study the dual CFT states and how the
bulk cosmology is encoded within them.

• While a homogeneous scalar field can not cure the self-intersection
problem, an inhomogeneous scalar field may be able to resolve it.

(Betzios & Papadoulaki 2024)
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Thank You!
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