Boundary-induced transitions In
MoObius quenches of holographic BCFT

Federico Galli

INERE.!}I

Istituto Nazionale di Fisica Nucleare
Sezione di Firenze

20 June 2025, IFT Madrid

Based on arXiv: 2402.16555 [hep-th]
with Alice Bernamonti (Florence U.) Dongsheng Ge (Osaka U.)



Introduction

Boundaries are a generic features in physical systems and arise in a number of situations, with
effects that are probed by physical quantities such as partition and correlations functions.

In 2d CFT for instance the presence of a boundary gives additional contributions, which depends
on the choice of boundary conditions, to the thermodynamic and entanglement entropy
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where next to the usual terms there is a contribution from the boundary entropy associated with

the corresponding boundary state

When some dynamics is injected into a system, boundary conditions can significantly alter the
dynamics and lead to different effects depending on the choice of boundary conditions.



INn this talk

Q: How boundary effects can influence the dynamics of entanglement?

o 2d Holographic BCFTs:

BCFT AdS + brane

© Dynamics induced by a particular class of spatially inhomogenous quenches:
Mobius and SSD Hamiltonian quenches



Setup: 2D CFT on a Strip

CFT in 1+1 dimensions on an interval of length L, with different conformal boundary conditions
at the two ends of the interval
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Entanglement Entropy

Entanglement entropy of a subinterval adjacent to one of the boundaries : w -
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As opposed to the case with homogeneous BCs, this is not fixed by conformal invariance
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Holographic BCFTs

Analogous to a four point function in the full complex plane. Two relevant expansions:
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Depends on all the details of the CFT



Holographic BCFTs

Analogous to a four point function in the full complex plane. Two relevant expansions:
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Depends on all the details of the CFT

For holographic CFTs

Large central charge ¢ > 1

Sparse spectrum of low-dimension operators

Dominant contribution to the computation of the entanglement entropy

comes from the exchange of the stress tensor and its conformal family IFitzpatriCk?apIanWalters14]
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Entanglement Entropy in HBCFTs

Retaining the universal contribution from the conformal family of the Identity the
entanglement entropy is evaluated as the minimum between two contributions
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Boundary entropy sa = log(0|A)
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The boundary entropy participates in determining the dominant saddle

Even for a small region adjacent one boundary, the entropy can “probe” the other boundary



Inhomogeneous Quench

(Q): What happens when you give the system some dynamics?

Quench the system changing the Hamiltonian
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Mobius-like Hamiltonians

Full class of deformed Hamiltonian constructed from the CFT stress tensor
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Example: Sine Square Deformation, obtained for k=2 and 6 — oo
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Time Evolution

The action of the Hamiltonian on a primary operator can be obtained explicitly and takes the form
of a conformal transformation
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the time 7 after the quench
enters as a parameter

For post quench state p(tg) = e "2 | ap) (bap|et”

the evaluation of entanglement entropy reduces to the same computation performed for the initial state
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Entanglement Entropy Evolution

Continuing to real time tg — it we obtain the general expression
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Entanglement Entropy Evolution

Continuing to real time tg — it we obtain the general expression

TOE

5() = < log (E) (720) + s (QT)) +min { < logsin? (26(8)) + s 5 logsin? (£ (2 — 3(1))) + 51}

SSD Hamiltonian MObius k=2 Hamiltonian
7T2 2 7T2 2 o
ft) = —2L2t | (1 | 2L2t ) COS (%) fo(T) = —sin®(T) sinh(46) + (cos®(T') + cosh(46) sin”(T')) cos (27TTO>
s ) + i sin (QT) Libo _ fo(T') + isin (% . t
\/f 2 4 st o7 0') \/fe (T')2 + sin’ ((%TU) L cosh(26)

(Q): Can the quench dynamics change the dominant saddle?



SSD Quench
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Dynamical phase transition induced by the quench

The transition pattern is determined by relation between the boundary entropies: when the boundary
degrees of freedom of A and B are close enough to each other a transition from A to B happens

Evolution of each channel qualitatively similar to the universal case with a single boundary condition

t [WenWu18]

C
Late time growth with no revivals compatible with an effective infinite length S(t) ~ 3 log -



Mobius Quench
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Interpolates between the undeformed (6 = 0) and the SSD (6 = o0) case

Dynamics compatible with a finite effective size L.s¢ ~ L cosh 20

Alternating pattern of dynamical phase transitions A-B-A over each period similarly
determined by the boundary entropies



Holographic Interpretation

For a holographic BCFT this has a dual geometric description
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The post quench computation can be obtained extending the CFT map to a bulk diffeomorphism,

with some subtlety [Banados99]
[Roberts12]



Concluding Remarks

In holographic BCFTs, there is a phase transition in the entanglement entropy induced by
the inhomogeneous quench and linked to mixed boundary conditions.

Does this phase transition distinguish holographic BCFTs from non-holographic ones?

AdS geometry dual to the post-quench time dependent state?

Double holography: two different gravitational AdS2 spacetimes separated by a defect.
Quantum extremal surface dynamically jumping from one spacetime to the other



Thank you!



