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Motivation: Microstate Counting

Motivation: Microstate Counting
Microscopic entropy of rotating, electrically charged, AdSd+1 black
holes using the superconformal index in CFTd.

Entropy of supersymmetric AdS5 black holes.

SBH = 2π

√
Q1Q2 +Q2Q3 +Q3Q1 −

N2

2
(J1 + J2).

N = 4 SYM superconformal index on S1 × S3

I(β,∆I , ωi) = Tr
(
(−1)F e−βEe−

∑3
i=1 ∆IQIe−

∑2
i=1 ωiJi

)
.

E = {Q,Q†}, QI -charges in U(1)3 ∈ SO(6)R, Ji angular momenta.

Some sub-leading corrections are understood S = A
4G + α log

(
A
G

)
,

where α is the result of a one-loop computation determined by
massless fields running in the loop and zero modes.

How reliable are low-dimensional (CFT2 and CFT1), low-energy
approaches to the entropy and the dynamics of near-extremal black
holes?
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Motivation: Microstate Counting

Microstate Counting of Supersymmetric Black Holes
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Motivation: Microstate Counting

Outline

A puzzle in the thermodynamics of near-extremal black holes and its
resolution

Universality in 3
2 log THawking corrections for near-extremal rotating

black hole thermodynamics from the one-loop gravitational partition
function

Vanishing log THawking contributions in supersymmetric black holes

Quantum corrections to Hawking radiation of rotating black holes

Quantum corrections to the Holographic Strange Metal
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Instability in Near-Extremal Black Holes

Low temperature black holes are thermodynamically
unstable

Large degeneracy is per se not an issue in supersymmetric black holes.
The low temperature breakdown of black hole thermodynamics for
extremal black holes was pointed out more than thirty years ago:
S ∼ S0 + αT,M ∼M0 + βT 2

[Preskill, Schwarz,Shapere,Trivedi, Wilczek, 1991] [Maldacena, Michelson, Strominger 1998] [Page 2000] .
At very low temperatures, the emission of one Hawking quantum can
drastically change the temperature of the near-extremal black hole.

Figure: Limitations of the Statistical Description of Black Holes [PSSTW ’91]
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Instability in Near-Extremal Black Holes

Jackiw-Teitelboim physics as a quantum resolution

The resolution to this puzzle did not require knowledge of the full
gravitational path integral (quantum gravity) and was first achieved
by a careful treatment of certain zero modes in the extremal solution
[Iliesiu, Turiaci, 2003.02860], [Heydeman, Iliesiu, Turiaci, Zhao, 2011.01953],

[Boruch,Heydeman,Iliesiu,Turiaci,2203.01331].

The realization that temperature effectively acts as a coupling
constant whereby the high-temperature regime is classical while the
very low-temperature regime is quantum and strongly coupled was
understood first in the context of two-dimensional Jackiw-Teitelboim
(JT) gravity [almheiri,Polchinski, 1402.6334],[Jensen, 1605.06098], [Maldacena, Stanford, Yang, 1606.01857].
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Instability in Near-Extremal Black Holes

JT in higher dimensional black holes

The near-horizon region of higher-dimensional, near-extremal black
holes contains a JT subsector that dominates the full path integral
[Iliesiu, Turiaci, 2003.02860], [Heydeman, Iliesiu, Turiaci, Zhao, 2011.01953],

[Boruch,Heydeman,Iliesiu,Turiaci,2203.01331].

Embedding quantum aspects of JT gravity in spherically symmetric
near-extremal black holes is almost immediate. The near-horizon
geometry of extremal Reissner-Nordstrom is AdS2 × Sp.

Embedding JT in rotating black holes with focus on classical aspects:
[Castro, Larsen, Papadimitriou,1807.06988], [Moitra,Sake,Trivedi,Vishal, 1905.10378], [Castro, Pedraza, Toldo,

Verheijden, 2106.00649].
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Instability in Near-Extremal Black Holes

Rotating black holes at one-loop: JT physics without KK

Recently log T correction to the thermodynamics of Kerr spacetime
was addressed in [Kapec-Sheta-Strominger-Toldo 2310.00848, Rakic-Rangamani-Turiaci 2310.04532]

The near-horizon extremal Kerr solution admits a family of
normalizable zero modes corresponding to reparametrizations of the
boundary time, just as in JT gravity.

The path integral over these zero modes leads to an infrared
divergence in the one-loop approximation to the Euclidean partition
function.

This divergence can be regulated by turning on a small but finite
temperature correction in the geometry
[Iliesiu, Murthy, Turiaci, 2209.13608], [Banerjee, Saha, 2303.12415], [Banerjee, Saha, Srinivasan, 2311.09595].

The resulting finite-temperature geometry lifts the eigenvalues of the
zero modes, rendering the path integral infrared finite and leading to
the thermodynamic-altering correction to the near-extremal black
hole: 3

2 log THawking.
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Universality in log THawking

Universality in Logarithmic Temperature Corrections to
Near-Extremal Rotating Black Hole Thermodynamics in
Various Dimensions, 2401.16507

Figure: Sabyasachi Maulik, Augniva Ray and Jingchao Zhang
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Universality in log THawking

Universality of 3
2 log THawking from tensor modes

4D: Kerr-AdS4, Kerr-Newman-AdS4 and the rotating black hole in
N = 4 gauged supergravity with two scalars and two electric charges
turned on.

5D: Asymptotically flat Myers-Perry black hole and the Kerr-AdS5
black hole, U(1)3 gauged supergravity.

Universally find that tensor modes contribute 3
2 log THawking to the

low-temperature thermodynamics. Root cause:
▶ The universal presence of a SL(2,R) subgroup of isometries in the

near-horizon geometry.
▶ A set of cancellations in the Lichnerowicz operator.

These two conditions hold for near-extremal black holes in
asymptotically flat and asymptotically AdS spacetimes of various
dimensions.
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Universality in log THawking

Kerr-AdS4

Igrav = − 1

16π

∫
M
d4x

√
−g (R− 2Λ)− 1

8π

∫
∂M

d3y
√
hK.

ds2 = −∆r

Σ2

(
dt− a

Ξ
sin2 θdϕ

)2
+

Σ2

∆r
dr2 +

Σ2

∆θ
dθ2

+
∆θ

Σ2
sin2 θ

(
adt−

(
r2 + a2

)
Ξ

dϕ

)2

,

∆r =
(
r2 + a2

)(
a+

r2

L2

)
− 2Mr , ∆θ = 1− a2

L2
cos2 θ ,

Ξ = 1− a2

L2
, Σ =

√
r2 + a2 cos2 θ .
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Universality in log THawking

Mass, angular momentum, entropy, first law

Mass, angular momentum and entropy:

E =
M

Ξ2
, J =

M a

Ξ2
, S =

π
(
r2+ + a2

)
Ξ

,

Surface gravity κ, and temperature

T =
κ

2π
=
r+

(
1 + a2

L2 +
3r2+
L2 − a2

r2+

)
4π
(
r2+ + a2

) .

Angular velocity and first law:

Ω =
a
(
1 +

r2+
L2

)
r2+ + a2

, dE = TdS +ΩdJ.
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Universality in log THawking

Low temperature Kerr-AdS4
The extremal limit is defined as the limit when the two horizons
coalesce into one, and the temperature becomes zero.

The low temperature instability from the classical parameters defines
Tq.

J receives no T corrections – canonical ensemble.

M =
r0
(
L2 + r20

)2
L2
(
L2 − r20

) +
4
(
π2L4r30 + 2π2L2r50 + 9π2r70

) (
L2 + r20

)(
L2 − r20

) (
L4 + 6L2r20 − 3r40

) T 2 + . . .

S =
2πr20

1− 3r20
L2

+
8π2r30

(
1− r20

L2

)
(
1− 3r20

L2

)(
1 +

6r20
L2 − 3r40

L4

) T + . . .

J =
Lr20

√(
L2 − r20

) (
L4 + 3L2r20

)
(
L2 − 3r20

)2 .
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Universality in log THawking

Near-horizon geometry and ensemble choice

‘Bardeen-Horowitz’ like scaling transformation
{(r, t, θ, ϕ) → (y, τ, θ, φ)} where λ ≡ T

r = r+ (T ) +
4πL2r20

(
L2 + r20

)
L4 + 6L2r20 − 3r40

T (y − 1) ,

t = − iτ

2πT
, θ = θ ,

ϕ = φ− iτ


(
L2 − 3r20

)√L4+3L2r20
L2−r20

4πL3r0

1

T
− 1

 .

T as a physical regulator, other regulators in QNM [Kapec et al.],
[Arnaudo, Bonelli, Tanzini].
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Universality in log THawking

Near-horizon geometry

The leading-order zero-temperature metric:

ds2(0) = ḡµνdx
µdxν

= g1(θ)

(
dy2

y2 − 1
+
(
y2 − 1

)
dτ2
)
+ g2(θ)dθ

2

+ g3(θ) (dφ+ ig4(y) (y − 1) dτ)2 ,

AdS2 is squashed, g1, and fibered over S1 ∼ φ, g4. The θ dependence
prevents reduction to 2d.

The linear in temperature deformation, by expanding M and a:

ds2(1) = Tg(1)µν dx
µdxν .
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Universality in log THawking

Quantum corrections via path integral
Fluctuations around the background: gµν = ḡµν + hµν

Z = exp(−I(ḡ))
∫
D[h] exp

[
− 1

64π

∫
d4x

√
ḡ h̃µν∆Λhµν

]
.

Gauge symmetry and gauge fixing
(
gµν 7→ gµν + ∂(µfν)

)
:

LGF =
1

32π
ḡµν

(
∇̄αh

αµ − 1

2
∇̄µhαα

)(
∇̄βh

βν − 1

2
∇̄νhββ

)
.

The linearized kinetic operator (Lichnerowicz) for hµν :

∆Λhµν =
1

32π

(
− ∇̄2hµν + 2R̄µρh

ρ
ν − 2R̄µρνσh

ρσ

− 4

(
R̄νσ − 1

4
ḡνσR̄

)
hσµ − 2Λhµν

)
.
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Universality in log THawking

Diffeomorphisms and zero modes

The log T corrections arise from the zero modes of the Lichnerowicz
operator: ∆Λhµν = 0.

An Ansatz for the vector field generating the zero modes as
diffeomorpshisms.

ξ(n) = einτ
(
f1(y)

∂

∂y
+ f2(y)

∂

∂τ
+ f3(y)

∂

∂φ

)
The vector generates diffeomorphisms given by hµν = Lξg

(0)
µν .
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Universality in log THawking

Diffeomorphisms and zero modes

The zero mode, h
(n)
µν dxµdxν =

√
3|n| (n2 − 1)

(
L6 + 3L4r20 − 21L2r40 + 9r60

)
64π2L

L2 − r20 +
(
L2 + 3r20

)
cos2 θ

L4 + 6L2r20 − 3r40

einτ
(
y − 1

y + 1

) |n|
2
(
−dτ2 + 2i

|n|
n

dτdy

y2 − 1
+

dy2

(y2 − 1)2

)
, |n| ≥ 2 .

One can check (∆Λh)µν = 0 , µ, ν ∈ {y, τ, θ, φ}.

The zero modes are generated by diffeomorphisms h
(n)
µν ∝ Lξ ḡµν

The zero mode extends in (τ, y) but depends also on θ.

The physics of (AdS2) JT in higher dimensions without KK reduction.
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Universality in log THawking

Diffeomorphisms and zero modes

The diffeomorphisms generated by the vector field ξ are large gauge
transformations and they can not be gauged away.

Note that the vector field ξ does not die off at the asymptotic
boundary of AdS2, they are O(1) (y = cosh η):

ξ(n)
∣∣
η→∞ =

einτ

2|n| (n2 − 1)
(|n|∂η + i∂τ − ∂φ) ,

The zero modes {h(n)µν } themselves are normalizable and are part of
the physical spectrum and need to be integrated over in the path
integral.
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Universality in log THawking

Diffeomorphisms and zero modes

The diffeomorphism generating vector fields at the boundary

ξ ∼ ε′(τ)∂η − ε(τ)∂τ − iε(τ)∂φ , ε(τ) =

∞∑
n=2

fn exp(inτ) .

The vector field generates the reparametrization

η → η + ε′(τ) , τ → τ − ε, φ→ φ− iε

.

The vector fields generating the large diffeomorphisms are the
Schwarzian modes which act on the boundary [Iliesiu, Murthy, Turiaci, 2209.13608]

[Maldacena, Stanford, Yang, 1606.01857].
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Universality in log THawking

Log T corrections from zero modes

The pertubatively deformed eigenvalue problem ({hn, λ0n} is the
eigenspectrum and {δhn, δλn} is the respective correction)(

∆Λ + δ∆Λ
)
(hn + δhn) =

(
λ0n + δλn

)
(hn + δhn) ,

δλn =
3n
(
1− r20

L2

)
64 r0

T, n ≥ 2 .

The zero modes λ0n = 0 leads to the log T corrections:

δ logZ

∣∣∣∣∣
log T

= − log

[ ∞∏
n=2

3n
(
1− r20

L2

)
T

64 r0

].
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Universality in log THawking

Final result

δ logZ

∣∣∣∣∣
log T

=
3

2
log

(
T

Tq

)
+O(1), Tq ≡

64 r0

3
(
1− r20

L2

) .
Note that on taking the large L limit above, one recovers the result
for the Kerr black hole in flat space presented in [Kapec-Sheta-Strominger-Toldo

2310.00848, Rakic-Rangamani-Turiaci 2310.04532].

We confirm the independence of the log T correction with respect to
the ensemble (canonical versus grand canonical).

JT physics, ZJT =
(

T
Tq

)3/2
eS0+αT , without KK reduction.
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Universality in log THawking

Kerr-Newman-AdS4
Einstein-Maxwell with negative cosmological constant:

I = − 1

16π

∫
M
d4x

√
−g
(
R− 2Λ− F 2

)
+ IBoundary.

The Lichnerowicz operator:

hαβ∆
αβ,µν
L hµν = hαβ(∆

αβ,µν
EH − 2Λ∆αβ,µν

1 − 2∆αβ,µν
F )hµν ,

hαβ∆
αβ,µν
F hµν = hαβ(−

1

8
F 2
(
2gαµgβν − gαβgµν

)
+ FαµF βν

+ 2FαγFµ
γg

βν − FαγF β
γg

µν)hµν

At zero temperature (g = ḡ, A = Ā), the above operator has the

following zero modes h
(n)
µν dxµdxν ( n ≥ 2):

cne
inτ

(
−1 + y

1 + y

)n
2 (
a2 + 2r20 + a2 cos(2θ)

)
(
dτ2 − 2i

|n|
n

dτdy

y2 − 1
− dy2

(y2 − 1)2

)
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Universality in log THawking

Zero modes, one-loop action

The expression of the operator is intractable, but the integration is
straightforward and the result is simple

δλn =

∫
dx4

√
ḡh

(n)∗
αβ δ∆αβ,µν

L h(n)µν =
3nr0T

8(a2 + 3r20)
, n ≥ 2.

The contribution of the extremal zero modes to the low-temperature
partition function is therefore

δ logZ = log(
∏
n≥2

π

δλn
) =

3

2
log(

T

Tq
) +O(1).
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Universality in log THawking

Other explicit theories

Kerr-Newmann-AdS black hole in N = 4 gauged supergravity.

L4 =R ∗ 1− 1

2
∗ dζ ∧ dζ − 1

2
e2ζ ∗ dχ ∧ dχ

− 1

2
e−ζ ∗ F(2)2 ∧ F(2)2 −

1

2
χF(2)2 ∧ F(2)2

− 1

2 (1 + χ2e2ζ)

(
eζ ∗ F(2)1 ∧ F(2)1 − e2ζχF(2)1 ∧ F(2)1

)
+ g2

(
4 + 2 cosh ζ + eζχ2

)
∗ 1,

where ζ and χ are the dilaton and axion.

Myers-Perry black holes in five dimensions

Kerr-AdS5 Black hole
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Universality in log THawking

Why is this universal?

Extremal black holes in their near horizon geometry always have an
AdS2 factor, possibly fibered over some compact directions.

The explicit form of the near-horizon isometry group was first
explicitly presented in [Bardeen, Horowitz, 9905099].

H. K. Kunduri, J. Lucietti and H. S. Reall, Near-horizon symmetries
of extremal black holes, Class. Quant. Grav. 24 (2007) 4169–4190,
[0705.4214] Lemma : The metric

ds2 = Γ(ρ)

[
A0r

2dv2+2dvdr

]
+dρ2+γij(ρ)(dx

i+kirdv)(dxj+kjrdv)

has isometry group SL(2,R)× U(1)D−3 if A0 ̸= 0.
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Universality in log THawking

Universality of log T corrections

Technically, the log T corrections arise as corrections to the
eigenspectrum of the Lichnerowicz operator.

Perturbation theory: We know the eigenspectrum {hn, λ0n} of the
Lichnerowicz operator ∆̄ evaluated at the NHEK-AdS : ∆̄hn = λ0nhn.

Move slightly away from extremality, i.e., we turn on a small
temperature T . This induces a change in the metric
ḡ → g = ḡ + T δg +O(T 2). This in turn induces a change in the
Lichnerowicz operator ∆̄ → ∆ = ∆̄ + δ∆(T ) and the eigenspectrum
{hn + δhn(T ), λ

0
n + δλn(T )}.

The corrected eigenvalue is the expectation value of the corrected
operator:

δλn(T ) =

∫
d4x

√
ḡ
(
h(n)

)
αβ

(δ∆)αβ,µν
(
h(n)

)
µν
.
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Universality in log THawking

Universality of log T corrections

One-loop fluctuations equal determinat (δλn(T ) = nf1T +O
(
T 2
)
):

logZ ∼ log
∏
n

1

δλn(T )

The range for n ≥ 2. The near horizon geometry necessarily has an
AdS2 factor. The eigenfunctions h0n of the Lichnerowicz operator are
generated by diffeomorphisms: hn ∼ Lξ(n) ḡ . Now, due to the
presence of the AdS2 throat, Lξ(n) ḡ vanish for n = ±1, 0 as they

correspond to the isometry of AdS2 ⊂ Diff(S1).

Evaluating the infinite product via zeta-function regularization

logZ ∼ 3

2
log T + . . .
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Universality in log THawking

Universality of log T corrections

Key ingredients:

1 Presence of an AdS2 throat in the near horizon geometry [Lemma]
2 Regularized value of an infinite product
3 The log T term receives no corrections from the matter sector.

The contributions come from only two terms in hαβδ∆
αβ,µνhµν :

▶ hαβ δ
(
1
2g

αµgβν□hµν
)

▶ hαβ δ
(
Rαµβν

)
hµν

The above terms are completely determined by the geometry which is
universal.

Claim in progress [Jingchao Zhang]: The above cancellation is true
also for dS asymptotics. (See talk by Watse Sybesma)
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Supersymmetric Black Holes

Supersymmetric black holes

N = 2 supergravity

I =

∫
d4x

√
g (Lb + Lf ) ,

Lb = R− FµνF
µν ,

Lf = −1

2
ψ̄µγ

µνρDνψρ −
1

2
φ̄µγ

µνρDνφρ +
1

2
Fµνψ̄µφν

+
1

4
Fρσψ̄µγ

µνρσφν −
1

2
Fµνφ̄µψν −

1

4
Fρσφ̄µγ

µνρσψν .

The gauge-fixing terms for the fermionic part (ψµ → ψµ + γµϵ)

Lgf, f =
1

4
ψ̄µγ

µγνDνγ
ρψρ +

1

4
φ̄µγ

µγνDνγ
ρφρ .
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Supersymmetric Black Holes

The Reissner-Nordstrom background

Asymptotically flat, electrically charged solution.

ds2 = fdτ2 +
dr2

f
+ r2

(
dθ2 + sin2 θdϕ2

)
, f = 1− 2M

r
+
Q2

r2
,

A = −i Q
r+

(1− r+
r
)dτ,

All computations can be performed for the dyonic solution.

The near-horizon geometry is AdS2 × S2.
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Supersymmetric Black Holes

Vector contribution

Action

I = −
∫
d4x
√
|g|FµνFµν .

The gauge fixing term (ζ is a constant) and the kinetic operator:

Lgf,v = −2

ζ
(∇µA

µ)2,

δAµ∆
µνδAν = 2δAµ

(
gµν□+

(
1

ζ
− 1

)
gµρgνσ∇ρ∇σ

)
δAν .

The vector zero modes [Camporesi-Higuchi, ’94]

δA = dΦ(ℓ), Φ(ℓ) =
1√
2π|ℓ|

[
sinh η

1 + cosh η

]|ℓ|
eiℓθ, ℓ = ±1,±2,±3, · · · .
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Supersymmetric Black Holes

Vector contribution

Turning on a small temperature, we can regularize these zero modes
and obtain the lifted eigenvalues

Λℓ = δΛℓ =
3π

a
ℓT.

Performing the zeta-function regularization:

δ logZ ∼ −2× 1

2
log(

∏
ℓ≥1

Λℓ) ∼
1

2
log T.
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Supersymmetric Black Holes

Fermionic contribution

Regularization of the zero modes by turning on a small temperature.
Substitute g = ḡ + δg instead of ḡ and keep to O(T )and find the
lifted eigenvalues

Λk = δΛk ∝ (2k + 1) T.

Fermionic fluctuations lead to Fermionic determinants as product of
eigenvalues

δ logZ ∼ log(
∏
k≥1

Λk).

Zeta function regularization can be applied to the infinite product.
We have

δ logZ ∼ −1

2
log T.

Four zero modes would give us a total contribution

δ logZ ∼ −2 log T.
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Supersymmetric Black Holes

log T cancellation in susy black holes

Graviton contribution: 3
2 log THawking

Gravitino contribution: 4×
(
−1

2

)
log THawking

Vector contribution: 1
2 log THawking

Vanishing total contribution:
(
+3

2 − 2 + 1
2

)
log THawking

WIP: Asymptotically AdS and rotating black holes in various
dimensions.

The main technical difficulty is the construction of the fermionic zero
modes in the rotating case.
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Supersymmetric Black Holes

Open Issues

Near-horizon versus the full geometry. What is the nature of these
zero modes in the full geometry? [Kolanowski, Marolf, Rakic,Rangamani,Turiaci,

2409.16248]

Regularization, finite T , QNM [Arnaudo-Bonelli-Tanzini,2412.16057, 2405.13830,

2506.08959]

Applications to de-Sitter black holes [ Blacker,Castro,Sybesma,Toldo, 2503.14623]

[Maulik, Mitra,Mukherjee,Augniva Ray, 2503.08617 ]

Logarithmic temperature corrections in supersymmetric black holes.
The precise cancellation from the higher-dimensional and
lower-dimensional points of view [LPZ, Jingchao Zhang].

Leo Pando Zayas (Michigan) Quantum Corrections Thermo Strange 36 / 63



Quantum-Corrected Hawking Radiation

Quantum-Corrected Hawking Radiation from
Near-Extremal Kerr-Newman Black Holes, 2501.08252

Figure: Sabyasachi Maulik and Xin Meng
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Quantum-Corrected Hawking Radiation

Effective Quantum Corrections
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Quantum-Corrected Hawking Radiation

Quantum corrected Hawking Radiation
[Brown, Iliesiu, Pennington,Usatyuk, 2411.03447]

The higher dimensional black hole usually carries conserved charges:
electric charge or conserved angular momentum.

The low energy action with global U(1) symmetry [Thomas Mertens]:

ISch×U(1) = −C
∫ 1

TH

0
dτ{tan (π THf (τ)) , τ}

+
K

2

∫ 1
TH

0
dτ (∂τϕ− i (2πETH) ∂τf)

2 .

The parameters: C, K, and E are specified by their connection to the
thermodynamics of the original four dimensional black hole:

C =
1

4π2

(
∂S

∂T

)
TH→0

, E =
1

2π

(
∂S

∂Q

)
TH→0

, K =

(
dQ

dµ

)
TH→0

.

K is the charge susceptibility or compressibility of the four
dimensional black hole.
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Quantum-Corrected Hawking Radiation

Density of States

The partition function obtained from the 2D action

Z (βH , µ) = eS0

(
2πC

βH

) 3
2

e
2π2C
βH︸ ︷︷ ︸

Schwarzian sector

∑
n

e
−βH

(
n2

2K
−µn

)
︸ ︷︷ ︸

U(1) sector

,

Density of States

ρ (E, q) = 2C eS0 sinh

(
2π

√
2C

(
E − q2

2K

))
.
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Quantum-Corrected Hawking Radiation

Correlation functions

To compute the emission rate, we also require the matrix element of
an operator O on the AdS2 boundary between the initial and final
energy eigenstates - which are the states of the black hole and
radiation before and after emission.

|⟨Ef , ω| O(0)| Ei⟩|2 =
C

π2
δq1,q2+q

×
Γ

(
∆± i

√
2C
(
Ei −

q21
2K

)
± i

√
2C
(
Ef − q22

2K

))
(2C)2∆ Γ (2∆)

.
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Quantum-Corrected Hawking Radiation

Coupling and Fermi’s Golden Rule
Scalar field for example and coupling

ϕ(t, z) = ϕbdy z
1−∆ +O

(
z∆
)
,

I = ISch×U(1) +

∫
dt ϕbdy(t)O(t).

Spontaneous transition rate

Γi→f = |ϕ0|2 |⟨Ef , ω| O(0)| Ei⟩|2 δ (Ei − Ef − ω) .

Full spontaneous emission rates

Γspon. =

∫
dω ω

∫
dEf ρ (Ef , ω) Γi→f .

The rate of change of energy is calculated by

dE

dt dω
= ω

∫
dEf ρ (Ef ) Γi→f .
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Quantum-Corrected Hawking Radiation

Brown, Iliesiu, Pennington,Usatyuk, 2411.03447

Figure: Comparing the emission, dE
dtdω , in the quantum-corrected and

semi-classical framework for a scalar particle with quantum numbers
s = 0, l = 0,m = 0.
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Quantum-Corrected Hawking Radiation

Scalar field with angular momentum

Figure: Comparing the emission rate, dE
dtdω , in quantum-corrected theory and

semi-classical theory for a scalar particle emission with positive angular
momentum s = 0, l = 1, m = 1 for black hole at relatively higher temperature
and lower temperature
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Quantum-Corrected Hawking Radiation

Rotation is different

Unlike the generic suppression of particle emission in the
Reissner-Nordström case, we uncover that for particles with
non-vanishing angular momentum, the quantum-corrected emission
can be substantially enhanced with respect to the standard
semiclassical result.

Photon and gravitons emission are problematic due to potential
complex effective conformal dimensions.

For spherically symmetric black holes ∆(ℓ) = ℓ(ℓ+ 1)− s(s+ 1), for
rotating, through the spin-weighted spheroidal function ∆(aω).

Difficulties in accommodating higher-spin fields in the JT framework?
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Quantum-Corrected Hawking Radiation

Recent Developments/Ongoing work

The evaporation of charged black holes
[Brown, Iliesiu, Penington and Usatyuk, 2411.03447]

Quantum-Corrected Hawking Radiation from Near-Extremal
Kerr-Newman Black Holes [Maulik Sabyasachi, Xin Meng, LPZ].

The evaporation of black holes in supergravity [Lin, Iliesiu, Usatyuk,
2504.21077]

Black hole absorption [Emparan,2501.17470], [Biggs, 2503.02051]

Quantum Corrections in the Low-Temperature Fluid/Gravity
Correspondence [Nian-PZ-Yue], towards η

s corrections.

Applications for the evolution of astrophysical black holes: PBH,
evaporation and Dark Matter.
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Quantum-Corrected Hawking Radiation

Quantum Corrections to Holographic Strange Metal at
Low Temperature, 2410.11487

Figure: Xiao-Long Liu and Jun Nian

Leo Pando Zayas (Michigan) Quantum Corrections Thermo Strange 47 / 63



Quantum-Corrected Hawking Radiation

The Phase Diagram of Cuprates

Figure: The phase diagram of cuprates.
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Quantum-Corrected Hawking Radiation

The Phase Diagram of Cuprates

Figure: The phase diagram of cuprates.
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Quantum-Corrected Hawking Radiation

Gravity Setup

Simplest bottom-up holographic setup to a theory with stress-energy
tensor and conserved current: Einstein-Hilbert with negative
cosmological constant and Maxwell field.

The charged black brane

ds2 =
r2

R2

[
−f(r)dt2 + dx2i

]
+
R2

r2
dr2

f(r)
,

f(r) = 1 +
Q2

r4
− M

r3
, At = µ

(
1− r0

r

)
.
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Quantum-Corrected Hawking Radiation

Near-horizon limit

r − r∗ = λ
R2

2

ζ
, r0 − r∗ = λ

R2
2

ζ0
, t = λ−1τ,

ds2 =
R2

2

ζ2

−(1− ζ2

ζ20

)
dτ2 +

dζ2

1− ζ2

ζ20

+
r2∗
R2

dx⃗ 2 ,

Aτ =
gF

2
√
3

(
1

ζ
− 1

ζ0

)
.

The strict λ→ 0 limit. Beware of order of limits!

A ζ-reparametrization of AdS2
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Quantum-Corrected Hawking Radiation

Holographic Strange Metal

The mechanism of holographic strange metal:
[Faulkner, Iqbal, Liu McGreevy and Vegh, Science 329 (2010) 1043]

The negatively charged particle falls into the horizon, the positive
scatters leading to a finite density positively charged gas hovering
outside.

Treat the bulk spinor as a probe.
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Quantum-Corrected Hawking Radiation

Fermionic field

In the near-horizon AdS2, one can also consider the action for a
spinor field Ψ:

S =

∫
d2x

√
−g i

(
Ψ̄ΓαDαΨ−mΨ̄Ψ + im̃Ψ̄ ΓΨ

)
.

We obtain the fermionic operator retarded Green’s function in the
near-horizon boundary CFT1:

GR(ω, T ) = (2πT )2ℓ−1 g

(
ω

T
,
k

µ

)
,

ℓ ≡ 1√
6

√
m2R2 +

3k2

µ2
− q2

2
+

1

2
.

There might not be a sugra field with such ℓ
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Quantum-Corrected Hawking Radiation

3d/1d Gluing

The Green’s functions in the UV CFT3, G
3d
R , and in the IR CFT1, GR,

are related [Faulkner et al 2009wj].

G3d
R (ω, k) =

h1
k − kF (ω, T )− Σ(ω, k)

,

Σ(ω, T ) = h2 G(ω, T ), and kF (ω, T ) is approximately the Fermi
momentum kF for low ω and T .

h1,2 are positive constants that can be fixed numerically.

We exploit this 3d/1d gluing as a shortcut to including quantum
corrections.
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Quantum-Corrected Hawking Radiation

Linear Resistivity

The conductivity from Kubo formula

σ ≡ σ(Ω) =
1

iΩ
⟨Jy(Ω)Jy(−Ω)⟩ = 1

iΩ
Gyy

R .

The DC conductivity at the leading order in small T is given by

σDC = αT 1−2ℓ .

For ℓ = 1, this corresponds to the marginal Fermi liquid.
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Quantum Corrections to Strange Metal

Quantum Corrections to Holographic Strange Metal

Figure: The mechanism of introducing quantum fluctuations in the AdS2 throat
region, or equivalently in the boundary CFT1, in contrast to the classical case of
[Faulkner, Science].
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Quantum Corrections to Strange Metal

Throat region
1 The main AdS/CFT formula

ZCFT[J ] = Zbulk[ϕ0],

ϕ0 is the boundary value of the bulk field dual to the operator that
couples to the source J .

2 The holographic computation of the (2+1)-dimensional Green’s
function, G3d

R , is connected to the (0+1)-dimensional retarded
Green’s function of the throat, G1d

R
3 Approximate the retarded Green’s function of the throat by using the

coupling in the throat region to be φ0.

δ2Z2d
JT[φ0]

δφ2
0

=
δ2

δφ2
0

∫
[Dgµν ][Dϕ] exp

[
− S(gµν , ϕ;φ0)

]
≈ δ2

δφ2
0

∫
[Df ] exp

[
− S2d(f(t))− Smatter[φ0]

]
=

∫
[Df ] e−S2d[f(t)]GR(t) = ⟨GR(t)⟩ .
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Quantum Corrections to Strange Metal

Effective action

The effective action for both gravity and gauge fluctuations is given
by [Sachdev et al, Mertens et al. ]:

Seff [f,Λ] = −C
∫ β

0
dτ

{
tan

π

β
f(τ), τ

}
−K

2

∫ β

0
dτ
[
Λ′(τ)− iµf ′(τ)

]2
,

Λ(τ) ≡
∫∞
r0
Ar(r, τ) dr denotes the gauge fluctuation, and the

coupling constant K is the compressibility of the boundary quantum
system

AdS2 × R2 → AdS2 × T 2 leads to U(1)× U(1) gauge field with

MU(1)×U(1) ≪ C−1 ≃ K−1.
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Quantum Corrections to Strange Metal

Quantum corrections

The quantum-corrected Green’s function as a path integral with the
effective action:

⟨G(τ1, τ2)⟩ =
∫
[Df ][DΛ] e−Seff [f,Λ] G′(τ1, τ2) .

Introducing Λ̃(τ) = Λ(τ)− iµf(τ) leads to a decoupling of the
f -dependent and the Λ-dependent factors:

⟨G(τ1, τ2)⟩ = ⟨ei(Λ̃(τ1)−Λ̃(τ2))⟩ ·

〈( √
f ′(τ1)f ′(τ2)

β
π sinπ

β |f(τ1)− f(τ2)|

)2ℓ〉
= ⟨Gf ⟩ · ⟨GΛ̃⟩ ,

The SL(2,R) part, ⟨Gf ⟩, and the U(1) part, ⟨GΛ̃⟩.
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Quantum Corrections to Strange Metal

DC Conductivity

In the high-temperature limit (β → 0), the quantum fluctuations can
be neglected. We should recover linear resistivity with no quantum
fluctuations from gravity.

We first take the high-temperature limit (β → 0) and then gradually
lower the temperature by adding terms of higher orders in β to see
how the resistivity deviates from the linear scaling law.

This is an intrinsically perturbative approach driven by the
phenomenology of the problem.
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Quantum Corrections to Strange Metal

Results

Rewrite the quantum-corrected Green’s function:

⟨G(ω, T )⟩ = F2(β, ℓ;ω, q,K) ·

[
β

2C
+

1− 2ℓ

2π2

(
β

2C

)2
]1−2ℓ

= F1(β, ℓ;ω, q,K) ·
(
β

2C

)1−2ℓ′

A renormalized parameter ℓ′ represent the quantum-corrected ℓ.

ℓ′ =
1

2
−

ln
(
F2(β,ℓ;ω,q,K)
F1(β,ℓ;ω,q,K)

)
+ (1− 2ℓ) ln

[
β
2C + 1−2ℓ

2π2

(
β
2C

)2]
2 ln β

2C

,
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Quantum Corrections to Strange Metal

Frame Title

Figure: The uncorrected (blue) and quantum-corrected (red) DC resistivities as
functions of CT (with a special choice of parameters ℓ = 1, q = 1, K = 104, and
ω = 10−3).
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Quantum Corrections to Strange Metal

A little Pheno?
The entropy of a near-extremal AdS4 black hole:

S = S0 + 4π2CT +
3

2
log(CT )

= S0 +

(
Cp

T

)
T=0

· T +
3

2
log(CT ) ,

S0 the AdS4 black hole entropy in the extremal limit, Cp denotes the
heat capacity.

Heat capacity is linear in T at low temperatures with proportionality
constant γ ≡ Cp/T - the Sommerfeld coefficient.

For a class of strange metal (Ba4Nb1−xRu3+xO12, |x| < 0.20), which
takes values in the range [164mJ/(mol ·K2), 275mJ/(mol ·K2)] for
T ∈ [50mK, 30K].

Based on these data, an estimate of the quantum temperature in this
case is Tq ≡ 1/γ ≃ [30K, 50K], which, in principle, allows an
experimental detection of quantum corrections.
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