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Introduction

In the past years, lower-dimensional gravitational models have
proven to be very useful for insight in quantum gravity

→ Made possible to a large extent due to the explicit solvability of
some of these models (JT gravity, 3d gravity, Liouville gravity
models, Virasoro minimal string...)

But all of these models are still non-microscopic and effective:
continuous spectrum of states with DOS that is unbounded in the
UV + no discreteness or fuzziness in geometry

The SYK model itself is fundamentally microscopic, but its
holographic dual is unknown
SYK: bounded, discrete spectrum
Schwarzian: unbounded, continuous spectrum
→ middle ground: DSSYK: bounded, continuous spectrum
→ Possibility to learn deep lessons on holography for more
microscopic systems
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The SYK-model: introduction

SYK model: N 0+1 dimensional Majorana fermions ψi (t),
satisfying {ψi , ψj} = δij with all-to-all random interactions of p
fermions Sachdev-Ye ’92, Kitaev ’15:

H =
∑

i1<...<ip

Ji1...ipψi1 ...ψip

Dynamics in the large N IR regime is captured by a Schwarzian
effective action Kitaev ’15, Maldacena-Stanford ’16 . . ., which is in turn the
boundary description of 2d JT gravity!
→ Provides 1+1 holographic dual to 0+1 dimensional SYK

But what is the gravitational dual of SYK beyond this regime?
Largely unresolved question, with competing proposals in literature
e.g. Gross-Rosenhaus ’17, Das-Jevicki-Suzuki ’17, Das-Ghosh-Jevicki-Suzuki ’17, Goel-Verlinde ’21
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The SYK-model: double-scaling limit

A tractable limit of SYK exists that is both analytically solvable
and interesting: we double-scale p →∞ and N →∞ keeping ratio
λ ≡ p2/N fixed
⇒ Double-scaled SYK: DSSYK

In a series of impressive papers Berkooz-Isachenkov-Narovlansky-Torrents ’18 ..., disk
correlation functions (including matter) were obtained using a
chord diagram combinatorial technique

Transfer matrix:
√
2|log q|T̂ = α̂† + α̂1−q2n̂

1−q2
, n = chord number

where α̂† |n⟩ = |n + 1⟩ and α̂ |n⟩ = |n − 1⟩

Figure taken from Berkooz-Mamroud ’24 ...
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DSSYK: Disk partition function

Result: Disk partition function:

Z (β) =

∫ π

0
dθ (e±2iθ; q2)∞ eβ cos(θ)

with ρ(θ) = (e±2iθ; q2)∞
q-Pochhammer: (a; q)∞=

∏∞
k=0(1− aqk)

q = e−λ

→ q-Hermite polynomials ⟨n|θ⟩ ∼ Hn(cos(θ)|q2) diagonalize T̂
with energy − cos θ, two-bdy wavefunctions when slicing the disk:

Z (β) = ⟨n = 0| e−βT̂ |n = 0⟩ =

→ DOS ρ(θ) from orthogonality relation of q-Hermite polynomials:
+∞∑
n=0

1

(q2; q2)n
Hn(cos(θ1)|q2)Hn(cos(θ2)|q2) =

δ(θ1 − θ2)
(e±2iθ; q2)∞

.
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DSSYK: other correlators

→ Correlation functions in general mimic structure of the JT
correlators replacing SL(2,R) by its q-deformation SUq(1, 1) with
q = e−λ (λ = p2/N) Berkooz-Isachenkov-Narovlansky-Torrents ’18 ...

deformation parameter 0 < q < 1

→ JT limit: q → 1 undeformed limit (or λ→ 0) and θ = λk
(small energies)
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DSSYK: from transfer matrix to q-Liouville

Transfer matrix of DSSYK can be rewritten in a suggestive way:√
2|log q|T̂ = α̂† + α̂1−q2n̂

1−q2

Formally writing α = e−iP
√
1− q2, α† = e+iP/

√
1− q2,

n̂ = L
2| log q| :

⇒ T̂ ∼ H = − cos(P) +
1

2
e iPe−L, [L,P] = 2| log q|iℏ

Properties:
→ 2d phase space (L,P)

→ not manifestly Hermitian; can be 1:1 mapped into Hermitian
Hamiltonian H = −1

2e
iP
√
1− e−L − 1

2

√
1− e−Le−iP

Lin ’22

→ JT limit: H ≈ 1
2P

2 + 1
2e

−L

Liouville quantum mechanics (particle in exp. potential)
We have a deformed version of this, will call it q-Liouville

→ To describe DSSYK, we require that L is positive and discrete
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Second-order formulation of sine dilaton gravity

Q: Can we find this dynamical system directly in gravity?

2d dilaton gravity models:

S = 1
2

∫
d2x
√
−g (ΦR + V (Φ)) , Φ is dilaton field

Claim: V (Φ) =
sin(2| log q|Φ)
| log q|

leads to a match with H

Second-order formulation of classical gravity following
methodology of Harlow-Jafferis ’18

Consider a two-sided geometry (= 2d strip region)
→ 2d phase space: (T ,E )
T = time difference between 2 boundaries,
E = total ADM energy
→ Can choose different phase space coordinates as (L,P)
L = geodesic length between both sides, P = conj. momentum

⇒ same symplectic structure (L,P) and Hamiltonian H(L,P)
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First-order formulation of sine dilaton gravity (1)

First-order formulation of 2d dilaton gravity:
S = 1

2

∫
d2x
√
−g (ΦR + V (Φ)) =∫ [

Φ dω + 1
4V (Φ)ϵabea ∧ eb + Ja(dea + ϵa

bω ∧ eb)
]
, a, b = 1, 2

The general Poisson Sigma (PS) model is of the form: Ikeda ’93,

Schaller-Strobl ’94 S =
∫
M

(
Ai ∧ dJ i − 1

2Ai ∧ AjP
ji (J)

)
where Ai is gauge connection, and J i , i = 1...m coordinatize a
m-dimensional Poisson manifold target space:{
J i , J j

}
PB

= P ij(J), P ij = −P ji , ∂ℓP
[ij |Pℓ|k] = 0

Identifying Ai = (e+, e−, ω) and J i = (E+,E−,Φ)
→ 2d dilaton gravity is a special case of the PS model:
{E+,E−}

PB
= V (Φ)

2 , {E±,Φ}
PB

= ±E±

This Poisson algebra is a classical non-linear symmetry algebra of
the PS model (∼ classical counterpart of a quantum algebra)
→ For V (Φ) a sine function, this corresponds to the quantum
algebra Uq(su(1, 1)) which governed DSSYK correlators
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First-order formulation of sine dilaton gravity (2)

From Poisson-sigma model to the boundary (cfr. BF to particle on
group, or CS to WZW), Schematically Blommaert-TM-Yao ’23:

→ Define PS model on a 2d stripM, and add a boundary term as∮
∂M C dt where C is a Casimir function on the Poisson algebra
+ boundary condition , Ai

τ = ∂J iC

For the Poisson algebra {E+,E−}
PB

= V (Φ)
2 , {E±,Φ}

PB
= ±E±

One shows most general Casimir function is: Klösch-Strobl ’96

C = 1
2(E

+E− + E−E+) +
∫ Φ

V (Φ)dΦ
Note: this generalizes the boundary term in JT gravity in BF
formulation: TM ’18

∫
M TrBF − 1

2

∮
∂M TrB2, Ai

τ = B i

→ this 2d field theory has a finite-dimensional (6d) phase space
(topological model) Cattaneo-Felder ’01

→ One can “diagonalize” this six-dimensional symplectic space by
phase space variables (φ, pφ, β, pβ, γ, pγ) describing coordinates
and conj. momenta on the “quantum group manifold”
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First-order formulation of sine dilaton gravity (3)

⇒ Action for a particle on a quantum group manifold SUq(1, 1)

L = pφφ
′ + pββ

′ + pγγ
′ +

cos(log qpφ)
2(log q)2

− µβµγ
(log q)2

e−2φ−i log qpφ

where µβ = e
−2i log qβpβ−1

−2iβ , µγ = e−2i log qγpγ−1
−2iγ

Properties:
▶ Structure: left- and right symmetry algebra (cfr. WZW or

particle on group)
{jLi , jLj } = Pij(j

L), {jRi , jRj } = Pij(j
R) and {jL, jR} = 0

▶ Undeformed limit log q → 0: we get phase space Lagrangian:

L ≈ pφ φ
′ + pβ β

′ + pγ γ
′ − p2φ

4 − pβpγe
−2φ

= particle on the classical group manifold SL(2,R)
Constraining pγ = 1 leads to Schwarzian Lagrangian
⇒ Indeed, integrating over pβ sets β′ = e−2φ leads to the

Lagrangian 1
4(β

′′/β′)2 which is Schwarzian Lagrangian with
clock β(t)
⇒ We have found a q-deformation of this → q-Schwarzian

DSSYK and dilaton gravity models Thomas Mertens 12 30



First-order formulation of sine dilaton gravity (3)

⇒ Action for a particle on a quantum group manifold SUq(1, 1)

L = pφφ
′ + pββ

′ + pγγ
′ +

cos(log qpφ)
2(log q)2

− µβµγ
(log q)2

e−2φ−i log qpφ

where µβ = e
−2i log qβpβ−1

−2iβ , µγ = e−2i log qγpγ−1
−2iγ

Properties:
▶ Structure: left- and right symmetry algebra (cfr. WZW or

particle on group)
{jLi , jLj } = Pij(j

L), {jRi , jRj } = Pij(j
R) and {jL, jR} = 0

▶ Undeformed limit log q → 0: we get phase space Lagrangian:

L ≈ pφ φ
′ + pβ β

′ + pγ γ
′ − p2φ

4 − pβpγe
−2φ

= particle on the classical group manifold SL(2,R)
Constraining pγ = 1 leads to Schwarzian Lagrangian
⇒ Indeed, integrating over pβ sets β′ = e−2φ leads to the

Lagrangian 1
4(β

′′/β′)2 which is Schwarzian Lagrangian with
clock β(t)
⇒ We have found a q-deformation of this → q-Schwarzian

DSSYK and dilaton gravity models Thomas Mertens 12 30



First-order formulation of sine dilaton gravity (3)

⇒ Action for a particle on a quantum group manifold SUq(1, 1)

L = pφφ
′ + pββ

′ + pγγ
′ +

cos(log qpφ)
2(log q)2

− µβµγ
(log q)2

e−2φ−i log qpφ

where µβ = e
−2i log qβpβ−1

−2iβ , µγ = e−2i log qγpγ−1
−2iγ

Properties:
▶ Structure: left- and right symmetry algebra (cfr. WZW or

particle on group)
{jLi , jLj } = Pij(j

L), {jRi , jRj } = Pij(j
R) and {jL, jR} = 0

▶ Undeformed limit log q → 0: we get phase space Lagrangian:

L ≈ pφ φ
′ + pβ β

′ + pγ γ
′ − p2φ

4 − pβpγe
−2φ

= particle on the classical group manifold SL(2,R)

Constraining pγ = 1 leads to Schwarzian Lagrangian
⇒ Indeed, integrating over pβ sets β′ = e−2φ leads to the

Lagrangian 1
4(β

′′/β′)2 which is Schwarzian Lagrangian with
clock β(t)
⇒ We have found a q-deformation of this → q-Schwarzian

DSSYK and dilaton gravity models Thomas Mertens 12 30



First-order formulation of sine dilaton gravity (3)

⇒ Action for a particle on a quantum group manifold SUq(1, 1)

L = pφφ
′ + pββ

′ + pγγ
′ +

cos(log qpφ)
2(log q)2

− µβµγ
(log q)2

e−2φ−i log qpφ

where µβ = e
−2i log qβpβ−1

−2iβ , µγ = e−2i log qγpγ−1
−2iγ

Properties:
▶ Structure: left- and right symmetry algebra (cfr. WZW or

particle on group)
{jLi , jLj } = Pij(j

L), {jRi , jRj } = Pij(j
R) and {jL, jR} = 0

▶ Undeformed limit log q → 0: we get phase space Lagrangian:

L ≈ pφ φ
′ + pβ β

′ + pγ γ
′ − p2φ

4 − pβpγe
−2φ

= particle on the classical group manifold SL(2,R)
Constraining pγ = 1 leads to Schwarzian Lagrangian

⇒ Indeed, integrating over pβ sets β′ = e−2φ leads to the
Lagrangian 1

4(β
′′/β′)2 which is Schwarzian Lagrangian with

clock β(t)
⇒ We have found a q-deformation of this → q-Schwarzian

DSSYK and dilaton gravity models Thomas Mertens 12 30



First-order formulation of sine dilaton gravity (3)

⇒ Action for a particle on a quantum group manifold SUq(1, 1)

L = pφφ
′ + pββ

′ + pγγ
′ +

cos(log qpφ)
2(log q)2

− µβµγ
(log q)2

e−2φ−i log qpφ

where µβ = e
−2i log qβpβ−1

−2iβ , µγ = e−2i log qγpγ−1
−2iγ

Properties:
▶ Structure: left- and right symmetry algebra (cfr. WZW or

particle on group)
{jLi , jLj } = Pij(j

L), {jRi , jRj } = Pij(j
R) and {jL, jR} = 0

▶ Undeformed limit log q → 0: we get phase space Lagrangian:

L ≈ pφ φ
′ + pβ β

′ + pγ γ
′ − p2φ

4 − pβpγe
−2φ

= particle on the classical group manifold SL(2,R)
Constraining pγ = 1 leads to Schwarzian Lagrangian
⇒ Indeed, integrating over pβ sets β′ = e−2φ leads to the

Lagrangian 1
4(β

′′/β′)2 which is Schwarzian Lagrangian with
clock β(t)

⇒ We have found a q-deformation of this → q-Schwarzian

DSSYK and dilaton gravity models Thomas Mertens 12 30



First-order formulation of sine dilaton gravity (3)

⇒ Action for a particle on a quantum group manifold SUq(1, 1)

L = pφφ
′ + pββ

′ + pγγ
′ +

cos(log qpφ)
2(log q)2

− µβµγ
(log q)2

e−2φ−i log qpφ

where µβ = e
−2i log qβpβ−1

−2iβ , µγ = e−2i log qγpγ−1
−2iγ

Properties:
▶ Structure: left- and right symmetry algebra (cfr. WZW or

particle on group)
{jLi , jLj } = Pij(j

L), {jRi , jRj } = Pij(j
R) and {jL, jR} = 0

▶ Undeformed limit log q → 0: we get phase space Lagrangian:

L ≈ pφ φ
′ + pβ β

′ + pγ γ
′ − p2φ

4 − pβpγe
−2φ

= particle on the classical group manifold SL(2,R)
Constraining pγ = 1 leads to Schwarzian Lagrangian
⇒ Indeed, integrating over pβ sets β′ = e−2φ leads to the

Lagrangian 1
4(β

′′/β′)2 which is Schwarzian Lagrangian with
clock β(t)
⇒ We have found a q-deformation of this → q-Schwarzian

DSSYK and dilaton gravity models Thomas Mertens 12 30



First-order formulation of sine dilaton gravity (4)

L = pφφ
′ + pββ

′ + pγγ
′ +

cos(log qpφ)
2(log q)2

− µβµγ
(log q)2

e−2φ−i log qpφ

Corresponding Hamiltonian for the particle on the quantum group
SUq(1, 1): (L = 2φ and P = − log qpφ)

H = − cos(P)
2(log q)2

+
µβµγ
(log q)2

e−Le iP

One can reduce from the particle on SUq(1, 1) to the q-Liouville
system by constraining µβ = µγ = 1/2 to finally get

H =
1

2(log q)2

[
− cos(P) +

1

2
e−Le iP

]
matching again the DSSYK classical dynamical system

→ Derived by Hamiltonian reduction of a particle on the quantum
group manifold SUq(1, 1), which is the boundary system of the
first order Poisson-sigma model formulation of sine dilaton gravity

→ Benefit of first-order formulation: group-theoretic structure is
visible, already at the classical (Poisson-Lie) level + natural guess
of sine dilaton potential
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Sine dilaton gravity as two Liouville CFTs

Sine dilaton gravity is classically equivalent to two Liouville actions

With ρ the conformal factor of the metric: gµν = e2ρδµν , perform
the following field redefinition (ρ,Φ)→ (ϕ, χ):

bϕ = ρ+ i |log q|Φ , ibχ = ρ− i |log q|Φ , πb2 = i |log q| ,

One obtains two copies of Liouville CFT, each of which has the
classical action∫

d2x

(
1

4π
∂µψ∂µψ + µe2bψ

)
+

∫
dτ

(
µBe

bψ

)
The fields ϕ and χ have complex conjugate central charges

cϕ = 13+6i

(
π

|log q|
− |log q|

π

)
, cχ = 13−6i

(
π

|log q|
− |log q|

π

)
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Quantization of the system

H = − cos(P) +
1

2
e iPe−L

where [L,P] = 2| log q|iℏ

Q: How does one quantize a system like this?

In “coordinate space”: e±iP is a shift operator of ± one unit

Defining L = 2ϕ− |log q|, we obtain the H eigenvalue problem:

2 cos(θ)ψL
θ(ϕ) = ψL

θ(ϕ+ |log q|) + (1− e |log q|e−2ϕ)ψL
θ(ϕ− |log q|)

2 cos(θ)ψR
θ(ϕ) = ψR

θ(ϕ− |log q|) + (1− e−|log q|e−2ϕ)ψR
θ(ϕ+ |log q|)

for left- and right eigenvectors ψL
θ(ϕ) and ψ

R
θ(ϕ)

E = − cos(θ) parametrization of eigenvalue

→ Diagonalizing H leads to difference equations, which have highly
non-unique solutions ∼× periodic functions (“quasi-constants”)
unlike classical q → 1 case governed by differential eqns
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Liouville quantization (1)

Option 1: Classically the system was writable as two Liouvilles
Assume this remains true at the quantum level

→ Implement b → 1/b duality
(
q = eπib

2
, log q → − π2

log q

)
→ Eigenfunctions need to also diagonalize the dual Hamiltonian:

2 cos
(
θ
b2

)
ψL
θ(ϕ) = ψL

θ(ϕ−
π2

|log q|) + (1− e
− π2

|log q| e−2ϕ)ψL
θ(ϕ+ π2

|log q|)

2 cos
(
θ
b2

)
ψR
θ(ϕ) = ψR

θ(ϕ+ π2

|log q|) + (1− e
π2

|log q| e−2ϕ)ψR
θ(ϕ−

π2

|log q|)

If we take b2 ∈ R\Q, the two equations (b and b−1 image)
together cause a “dense covering” of the real ϕ-axis, allowing for a
unique solution (up to an overall prefactor)
Solution:

ψL
θ(ϕ) =

1

2π

∫ +∞

−∞
dp e−ipϕ Sb

(
−i bp

2
± i

b

2

θ

|log q|

)
e
−|log q| p

2

4
+ θ2

4|log q|−
πp
2

ψR
θ(ϕ) =

1

2π

∫
γ
dp e−ipϕ Sb

(
− i

bp

2
± i

b

2

θ

|log q|

)
e
|log q| p

2

4
− θ2

4|log q|−
πp
2
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Liouville quantization (2)

Leads to orthogonality computation:∫ +∞
−∞ dϕψL

θ1
(ϕ)ψR

θ2
(ϕ) = δ(θ1 − θ2)

/
sin(θ) sinh

(
πθ

|log q|
)

and disk partition function

Z (β) =

∫ +∞

−∞
dθ sin(θ) sinh

(
πθ

| log q|

)
eβ cos θ

→ Manifestly divergent energy density of states

ρ(E ) =
+∞∑

m=−∞
sinh

(
π(arccos(E ) + 2πm)

| log q|

)
→ Does not match with DSSYK, but is not completely wrong
either: “fake” thermodynamics Stanford-Lin ’23 or semiclassically only
contains the black hole contribution and not the “observer” part

→ is formally related to the complex Liouville string
Collier-Eberhardt-Mühlmann-Rodriguez ’24 by analytic continuation (change of
contour in θ → iθ, and restriction of integration range)
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Collier-Eberhardt-Mühlmann-Rodriguez ’24 by analytic continuation (change of
contour in θ → iθ, and restriction of integration range)

DSSYK and dilaton gravity models Thomas Mertens 17 30



Discrete quantization (1)

Option 2: H = − cos(P) + 1
2e

iPe−L has periodicity P→ P+ 2π
Gauge this symmetry
⇒ Conjugate variable L is on a discrete lattice!

L = −2n log q with n ∈ Z (ϕ ≡ −n log q − 1
2 log q)

→ No ambiguity now in solving the difference equations!
2 cos(θ)ψR

θ(n) = ψR
θ(n − 1) + (1− q2n+2)ψR

θ(n + 1)
→Feature: Coefficient of last term can become zero (at n = −1)!
Suppose ψR

θ(n) is nonzero for negative n ⇒ generically need
ψR
θ(n ≥ 0)→∞

Indeed, from earlier explicit solution of ψR → poles at positive n:

ψR
θ(n) =
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Discrete quantization (2)

One can explicitly show that on these poles, the wavefunctions
become the q-Hermite polynomials of DSSYK:

ψL
θ1
(n)ψR

θ2
(n) ∼ exp

(
− θ21+θ

2
2

2|log q|

)
Hn

(
cos(θ1)|q2

)
Hn

(
cos(θ2)|q2

)
with a divergent prefactor
Projecting on these, requires dividing the solution by ∞, removing
all support for n < 0 ⇒ Only positive length L survives!

Z (β) =
∫ +∞
−∞ dθ sin(θ) sinh

(
πθ

| log q|

)
e
− θ2

|log q| exp (β cos(θ))

Using the technical identity:∑+∞
m=−∞ 2 sin(θ) sinh π(θ+2πm)

|log q| e
− (θ+2πm)2

|log q| = (e±2iθ; q2)∞

⇒ Z (β) =

∫ π

0
dθ (e±2iθ; q2)∞ exp (β cos(θ))

→ matches DSSYK
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Comparison quantizations

Remark 1: Two quantization schemes differ in which symmetry is
taken seriously at the quantum level:

b ↔ b−1 versus P→ P+ 2π

One can see that these two symmetries are mutually exclusive
→ View this as physical interpretation of mathematical
construction of generalizing the q-Askey scheme from
q-polynomials to continuous functions Lenells-Roussillon ’21

Remark 2: Liouville gravity models have q = eπib
2
(b ∈ R) and

analytically continued H = cosh(P) + 1
2e

Pe−L

→ No periodicity in P ↔ Recursion relation has no singular points
⇒ No possibility for discrete quantization (or discrete bulk
spacetime)
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From discreteness to the classical continuum

Remark 3: The discretization of L is not a priori imposed on the
dynamical system H = − cos(P) + 1

2e
iPe−L

To contrast and compare with:
→ Tight-binding approximation in condensed matter physics,
electrons heavily bound to atoms in periodic array
→ wavefunctions supported on discrete x = n ∈ Z (atom sites)
⇒ p ∼ p + 2πℏ periodicity (1st Brillouin zone)

→ DSSYK: P ∼ P+ 2π as fundamental classical symmetry of
Hamiltonian
→ treat this as a gauge symmetry:

ψphys(x) =
∑

images e
i pℏ x = e i

p
ℏ x

∑
n e

i 2πn
ℏ x = e i

p
ℏ xℏ

∑
m δ(x −mℏ)

→ wavefunction only support on an integer lattice with ℏ spacing
As ℏ→ 0, lattice disappears and effectively becomes continuous
⇒ No contradiction between classical continuum and quantum
discretization of spacetime
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Towards a path integral perspective (1)

Path integral perspective of DSSYK via mapping to
particle on S1 (x ∼ x + 2π)

⇒ conjugate momentum is discretized p = nℏ in units of ℏ

textbook Feynman path integral computation:
⟨xf , tf |xi , ti ⟩ =∏N

n=1

[∫ 2π
0 dxn

]∏N+1
n=1

[∑+∞
pn=−∞

]
e i

∑N+1
n=1 [

pn
ℏ (xn−xn−1)− ϵ

ℏH(pn,xn)]

→ No continuum description

Equivalent textbook description by summing over winding modes
xf → xf + 2πl , l ∈ Z:
⟨xf , tf |xi , ti ⟩ =

∑+∞
l=−∞⟨xf + 2πl , tf |xi , ti ⟩non-cyclic

=∑
l

∏N
n=1

[∫ +∞
−∞ dxn

]∏N+1
n=1

[∫ +∞
−∞ dpn

]
e i

∑N+1
n=1 [

pn
ℏ (xn−xn−1)+2π l

ℏpN+1− ϵ
ℏH(pn,xn)]

→ Continuum path integral in phase space
→ Is true for any Hamiltonian on S1
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⟨xf , tf |xi , ti ⟩ =

∑+∞
l=−∞⟨xf + 2πl , tf |xi , ti ⟩non-cyclic

=∑
l

∏N
n=1

[∫ +∞
−∞ dxn

]∏N+1
n=1

[∫ +∞
−∞ dpn

]
e i

∑N+1
n=1 [

pn
ℏ (xn−xn−1)+2π l

ℏpN+1− ϵ
ℏH(pn,xn)]

→ Continuum path integral in phase space
→ Is true for any Hamiltonian on S1
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Towards a path integral perspective (2)

Overlap between conjugate states:

⟨pf , tf |pi , ti ⟩ =
∫ 2π

0
dxidxf e

ixipi−ixf pf ⟨xf , tf |xi , ti ⟩

Combine with
∑

l to get full range (−∞,+∞) for xi , xf

Leads finally to:

⟨pf , tf |pi , ti ⟩ =
1∑
l 1

∫ pf

pi

DxDp e iS[q,p]

→ The divergent factor in the denominator
∑

l 1 = Vgauge

compensates for the option of rigidly moving any given path
(x(t), p(t)) to (x(t) + 2πl , p(t)) with the same weight in the PI,
and is interpreted as the volume of the gauged symmetry group

→ Initial and final pi , pf have to be discrete ∈ ℏZ, but
intermediate paths do not

→ The DSSYK system is of this type but with x ↔ p
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Towards a path integral perspective (3)

⇒ Euclidean DSSYK gravitational path integral:∫
L(0)=L(β)=0

DLDP
Vgauge

exp

{
1

2|log q|

∫ β

0
dτ

(
i P

d

dτ
L+cos(P)−1

2
e iPe−L

)}

→ Classical solution with 0 < τ < β = 2π−4θ
sin θ

e−L =
sin(θ)2

sin(sin(θ)τ/2 + θ)2
, e−iP =

sin(θ)

tan (sin(θ)τ/2 + θ)
+ cos(θ)

Leads to on-shell action that matches with semi-classical saddle of
DSSYK disk partition function + subleading saddles match as well
(correspond to “winding” solutions)

→ One-loop contribution also matches with DSSYK
Bossi-Griguolo-Papalini-Russo-Seminara ’24
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Beyond the disk: single trumpet

Single trumpet amplitude was written down by Okuyama: Okuyama ’23

b β =
1

π

∫ π

0
dθ eβ cos θ cos(bθ) = Ib(β)

where b is the discretized! geodesic length around the neck of the
wormhole

3 derivations:
▶ Using closed channel slicing and the WdW equation

(discreteness follows from periodicity of conjugate variable Φ
in WdW equation)

▶ Open channel slicing with a two-boundary Hamiltonian
(relating it to EOW brane amplitudes)

▶ Quantum group computation by identifying cos bθ as a
principal series character in irrep θ on a “hyperbolic conjugacy
class element” labeled by b
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JT regimes in DSSYK

AdS JT gravity: q → 1 and energies θ = (small)

Flat JT gravity: q → 1 and energy close to max θ = π
2 + (small)

→ Leads to degenerate thermodynamics (Hagedorn); keep
subleading correction (∼ regularize flat space with cosm. horizon)
→ This is limit where q-Hermite → ordinary Hermite
→ Still discretization, but no quantum group!
→ quantum gravity of the Heisenberg algebra Almheiri-Goel-Hu ’24

dS JT gravity: q → 1 and energies θ = π − (small)
Recently Okuyama ’25: ETH matrix model Jafferis-Kolchmeyer-Mukhametzhanov-Sonner ’22

yields dS matrix model Cotler-Jensen-Maloney ’19
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Towards more general dilaton gravity models (1)

Observation for disk partition function for various known models:

JT gravity:
Z (β) =

∫
dΦΦ sinh(2πΦ)e−βΦ

2

Sinh dilaton gravity (= Liouville gravity):
Z (β) =

∫
dΦ sinh

(
2πb2Φ

)
sinh 2πΦe−β cosh 2πb2Φ

Sine dilaton gravity in “Liouville quantization scheme”:
Z (β) =

∫ +∞
−∞ dΦ sin(2 log qΦ) sinh(2πΦ)eβ cos(2 log qΦ)

⇒ Suggests expression for generic dilaton gravity models:

Z (β) =

∫ +∞

−∞
dΦV (Φ) sinh(2πΦ) e−βW (Φ)

where W (Φ) =
∫ Φ

dΦV (Φ)
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Towards more general dilaton gravity models (2)

Z (β) =

∫ +∞

−∞
dΦV (Φ) sinh(2πΦ) e−βW (Φ)

with W (Φ) =
∫ Φ

dΦV (Φ) ← Same as Casimir in PS model

Change integration variable to E = W (Φ)
But this change of variables is not 1 : 1!
General formula:

ρ(E ) =
∑

preimages Φi (E)

(−1)sign(W ′(Φi (E))) 1

8π2
e2πΦi (E)
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Towards more general dilaton gravity models (3)

Compare to Gas-of-defects approach: Maxfield-Turiaci ’20, Witten ’20

Deforms JT potential V (Φ) = 2Φ +
∑

n cne
−αnΦ with sum of

damped exponentials

⇒ ρ(E ) =
1

2π

∫
C

dΦ

2πi
e2πΦarctanh(

√
E/W (Φ))

Can be evaluated by integration by parts and residue to yield same
DOS as before:

ρ(E ) =
∑

preimages Φi (E)

(−1)sign(W ′(Φi (E))) 1

8π2
e2πΦi (E)

But: Subtlety with precise contour C and possible branch cut
contribution → to be understood
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Conclusion

DSSYK has a bounded spectrum and emergent discretization of
bulk geometric quantities (chord number)

Classical model is equivalent to q-Liouville and to sine dilaton
gravity in 2d bulk

We can reproduce DSSYK by quantizing this q-Liouville/ sine
dilaton gravity model in a particular discrete quantization scheme

We computed various quantities in this language matching with
DSSYK (and extending): saddle + one-loop path integral, single
trumpet, JT limits (incl. Heisenberg algebra model)

We formulated a (partly conjectural) generalization to generic
dilaton gravity models
→ In particular, combination of first-order (Poisson-sigma model)
+ second-order + gas-of-defects approaches could potentially
almost fully fix the answer → to be understood better

Thank you!
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