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I In the 60’s: are singularities of GR solutions due to their high degree of symmetry,
or a general feature of the theory?

Hawking-Penrose singularity theorems: gravitational collapse of physically sensible
matter in GR leads to the formation of singularities [Penrose '65; Hawking, Penrose '70].
—

Cosmological singularities: oscillatory approach to singularity, of chaotic nature
[Misner '69; Belinski, Khalatnikov, Lifshitz '70]: BKL oscillations.

Approaching the singularity: dynamics become ultra-local and spatial derivatives are
negligible wrt temporal ones.
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Near singularity, space-time looks like Kasner solution:
I ds® = —dt® + ¢*P1da? + t?P2dy® + ¢7P3d2%, pi+pe+ps=pi+ps+ps=1.

The parameters p; are Kasner exponents.

Kasner era

Motion restricted in parameter space to equilateral
triangle:
© Each straight line: Kasner epoch with fixed
Pi-
@ Each bounce produces changes of exponents.

{ N Kasner era

© Bounces between same edges: Kasner era. N ¥

@ Sequence of Kasner epochs: distances along two axes oscillate, decrease mono-
tonically along the third.

@ Change of Kasner era: axis along which distances decrease is exchanged.
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BKL oscillations & billiards

BKL oscillations arose originally in pure gravitational context:

3
ds® = —dt® + > i (W? W' =1lda’

i=1

Curvature walls produce bounces between epochs and eras: Mixmaster model.

Dynamics correspond to hyperbolic reflections in a hyperbolic billiard [Damour, Hen-
neaux, Nicolai '02]. Equivalent picture as motion restricted in equilateral triangle in
Euclidean space.

Curvature walls are not required: billiard walls may be also due to electric/magnetic
walls [Damour, Henneaux '00].
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BKL oscillations in BHs

BKL dynamics have been thoroughly examined in cosmological backgrounds

[e.g. Erickson, Wesley, Steinhardt, Turok '03; Heinzle, Uggla, Rohr '07; Montani, Battisti, Benini, Impo-
nente '07; Bakas, Bourliot, Liist, Petropoulos '09...]
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Only quite recently, it has been possible to find BKL oscillations inside BH interiors
[De Clerck, Hartnoll, Santos '23]. Remember Marine's talk!

They consider the following theory in D = 4:
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and AdS BH ansatz:

2_ 1 [ —2H(2) dz? —2G(2) 5,2 2G(2) 1, 2
ds* = e ( F(z) dt” + ) +e dz +e dy? ) ,
Ao = ¢u(2)dt, = ¢o(2)dt, = ¢y(2)dy

Horizons: zeros of F(z).
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@ Take p? or 12 to be negative. Allowed by AdS asymptotics as long as BF bound
is respected.

@ BH has single horizon and space-like singularity.

@ BKL dynamics develop in deep BH interior: billiard given by electric walls.
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4-dimensional BKL oscillations in AdS black holes

Both in Mixmaster and BH models, collision laws for Kasner exponents before and
after bounces are exactly the same.

Using parameter u > 1 [Belinski, Khalatnikov, Lifshitz *70]:

u(l +u) 14+u

- _ = - = > > p1-
P I qru+uw T Itutu?’ Ps 2Pz =P

_ —u
P = 14+u4u?’

After bounce
@ Within same Kasner era (u > 2):
Before bounce (ps,p2,p1) = (Ps(u—1),p1(u—1),p2(u—1)).
(3, p2,p1) = (P3(u), p2(u), p1(w)) - @ Change of Kasner era (2 > u > 1):

(p3,p2,p1) = (p2(u'), p1 ('), p3(u))) , w
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Higher-dimensional Mixmaster model

For general space-time dimension D > 5:

D-1
l ds? = —dt® + Z 1@ (W12 Wi = l;-dxj .

i=1

Near the singularity: dynamics become ultra-local — BKL dynamics for D < 10.

Kasner exponents are constant and satisfy [Demaret, Henneaux, Spindel '85]:

Dynamics of Kasner exponents bounded by curvature walls. If pp_1 > pp_1 > ... >
p1, collision law for exponents before p; and after p) [Demaret et al '85]:

’ —pl—P

o= _ pp—2+P+2p ; _ pp-1+P+2p
= PD—1T & T 4p1

/
Pp—2 = 1+2p + P y Pp-1= 1+2p + P

D—1 D—1
I Z pi = Z p? =1.
i=1 i=1

1+2p1 +P’

Py j=2....D-3, P=> p.

l_
BT e+ P



Higher-dimensional Mixmaster model

Using D — 3 parameters {ui}i';_le’, define: [Elskens, Henneaux '87]:

D-3
145 =1 Wi —u;
PD-1 —, Pp-2= 7 , PpD-2-i= P

L+ o2+ (1+ 20 uj)2

D) s and uy >ug > ... > UD-_3.

with s(u;) =

In appropriate parameter region, pp_1 > pp_2 > ...p1.




Higher-dimensional Mixmaster model

Using D — 3 parameters {ui}i';_f‘, define: [Elskens, Henneaux '87]:

_s—1 1+Z Py o
pp-1 = P pp-2 = 73 , PpD-2-i= P
2
1+ZD13u? (1+Z - uj)
with s(uz) = 5 R and u1 > us > ... > up—_3.

In appropriate parameter region, pp_1 > pp_2 > ...p1.

Letpp—1 = pp—1(wi), pp—2 = pp—2(wi), ..., p1 = p1(us). Two types of transitions:




Higher-dimensional Mixmaster model

Using D — 3 parameters {ui}i';_f‘, define: [Elskens, Henneaux '87]:

_s—1 1+Z Py o
pp-1 = P pp-2 = 73 , PpD-2-i= P
2
1+ZDl3u5 (1+Z - uj)
with s(uz) = 5 R and u1 > us > ... > up—_3.

In appropriate parameter region, pp_1 > pp_2 > ...p1.

Letpp—1 = pp—1(wi), pp—2 = pp—2(wi), ..., p1 = p1(us). Two types of transitions:

@ Transition of Kasner epochs. p)r_; = pp_1(u1 —
nent.

1,u;) is largest Kasner expo-



Higher-dimensional Mixmaster model

Using D — 3 parameters {ui}i';_f‘, define: [Elskens, Henneaux '87]:

_s—l 1"‘2]1“1 T
pp-1 = P pp-2 = 73 , PpD-2-i= P
2
) 1+ZJD f’u? (1+Z] 1 UJ)
with s(uz) = 5 R and u1 > us > ... > up—_3.

In appropriate parameter region, pp_1 > pp_2 > ...p1.

Letpp—1 = pp—1(wi), pp—2 = pp—2(wi), ..., p1 = p1(us). Two types of transitions:

@ Transition of Kasner epochs. p)r_; = pp_1(u1 —
nent.

1,u;) is largest Kasner expo-

@ Transition of Kasner eras, p’,_; no longer largest Kasner exponent.
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Mixmaster dynamics inside higher-dimensional AdS BHs

Let us find BKL dynamics in BH interiors for D > 5. Consider (D — 1)-dimensional
I massive vector fields:

1 D—-1)(D -2
L=R-7 [FJ~2+2M§A§]+(2%,
j=0
and an AdS BH ansatz:
1 _ 2?2 o, 2 _ o2
ds®* = = (—Fe Har + — 4 Z e % (da') 4 M9 (azP? ,
: 2 S ) et (120

Ao:¢>t(z)dt, Al:@(z)dw“ i:l,...,D—2.

with F, H,G;, ¢+ and ¢; functions of z. Note: (D — 1) independent functions
{F,H,G;} and (D — 1) independent functions {¢¢, ¢:}.

o If at least one u? < 0 (and above BF bound) — absence of inner horizon.



Mixmaster dynamics inside higher-dimensional AdS BHs

Near BH singularity: BKL oscillations arise.
Dynamics governed by Kasner regimes alternated
by jumps of Kasner exponents p;:

D—1 —1
dpi=> pi=1.
=1 =1




Mixmaster dynamics inside higher-dimensional AdS BHs

Near BH singularity: BKL oscillations arise.
I Dynamics governed by Kasner regimes alternated
by jumps of Kasner exponents p;:

D—1 —1
dpi=> pi=1.
=1 =1

@ Motion restricted to a (D — 2)-dimensional
simplex!

@ In D = 4 an equilateral triangle, in D
tetrahedron...




Mixmaster dynamics inside higher-dimensional AdS BHs

Near BH singularity: BKL oscillations arise.
Dynamics governed by Kasner regimes alternated
by jumps of Kasner exponents p;:

D—1 D—1 1
dopi=) pi=1. : \
=1 =1

@ Motion restricted to a (D — 2)-dimensional I
simplex! ‘

@ In D = 4 an equilateral triangle, in D =5 a
tetrahedron...

Bounces created by electric walls. No gravitational walls involved.



Mixmaster dynamics inside higher-dimensional AdS BHs

Near BH singularity: BKL oscillations arise.
Dynamics governed by Kasner regimes alternated
by jumps of Kasner exponents p;:

D—1 D—1 1
dopi=) pi=1. . \
=1 =1

@ Motion restricted to a (D — 2)-dimensional I
simplex! ‘

@ In D = 4 an equilateral triangle, in D =5 a
tetrahedron...

Bounces created by electric walls. No gravitational walls
chaotic for all D! [Damour, Henneaux '00].

involved. Dynamics is
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Bouncing rule for Kasner exponents — if pp_1 > pp_2 > ... > p1:

. p1 2
1 = = .
77'# ’ p1 1+ap17 a D—3

/ pi +ap1
pi =TT
14 ap1

It matches exactly the collision law for exponents in homogeneous cosmological
backgrounds [Benini, Kirillov, Montani '05].




Mixmaster dynamics inside higher-dimensional AdS BHs
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Bouncing rule for Kasner exponents — if pp_1 > pp—2 > ... > p1:

. P1 2
#1 ph=— = .
! ’ ! 1+apr’ “ D -3

; _ Ditap1
Di= 77— —
14 ap1

It matches exactly the collision law for exponents in homogeneous cosmological
backgrounds [Benini, Kirillov, Montani '05].

Collision law different with that of Mixmaster model with curvature walls. Electric
walls lead to different bouncing rules for exponents in D > 5!
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Mixmaster dynamics in five-dimensional AdS BHs

Analyze Kasner dynamics in deep BH interior for D = 5. Assume Kasner epoch
pa > p3 > p2 > p1. Kasner exponents p} after bounce may satisfy:

Q i > pi > s > ph.

Q i > ps > pi > ph.

Q pi > pl > ps > ph.

@ Last ordering: direction of largest Kasner exponent is swapped — change of
Kasner era.

@ Other two: bounces within same Kasner era.

Using parameters (u,v) on appropriate domain D of definition:

1 l+u+ov [
ps=1—--, ps=—"—, p2=——, p1=

s s s
s=1l+utv+u?+0>+uv.




Mixmaster dynamics in five-dimensional AdS BHs

Let us visualize Kasner era in D = 5 in terms of (u,v) parameters:
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Mixmaster dynamics in five-dimensional AdS BHs

Let us visualize Kasner era in D = 5 in terms of (u,v) parameters:

6

2
I Allowed Region D
| o4

le
6

Within Kasner era, identify new substructure: Kasner seasons. Defined as sequences
% of Kasner epochs sharing same pattern of orderings of new exponents:

@ Kasner season 1: If ps > ps > p2 > p1, then pjy > pi > ps > ph.

@ Kasner season 2: If py > p3 > p2 > p1, then py > py > pi > ph and
Py > ps >ps > pl.
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Mixmaster dynamics in higher-dimensional AdS BHs

Kasner seasons arise for any D > 5. A maximum of D — 3 distinct Kasner seasons

may be identified.

Kasner seasons are not exclusive of electric walls, nor just arise in BH interiors.
Mixmaster model in D > 5 with curvature walls features Kasner seasons.

—

For Mixmaster model in D = 5 (gravitational walls):

Allowed Region D,
2e

3e
de

In D =5, looks as if:

V/Gravitational Walls ~ Electric Walls

Explicitly proved this is the case
for bouncing rules of exponents in
D =5.
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Take-home message: BKL dynamics arise inside higher-dimensional AdS BHs.
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Key ingredient: D —1 massive vector fields with at least one u? < 0 creating electric
walls.




. £ ai
i Take-home message: BKL dynamics arise inside higher-dimensional AdS BHs.

Key ingredient: D —1 massive vector fields with at least one u? < 0 creating electric
walls.




R o — .. £ =

Take-home message: BKL dynamics arise inside higher-dimensional AdS BHs.

Key ingredient: D—1 massive vector fields with at least one ;2 < 0 creating electric

walls.
 —

Structure of Kasner eras reveals intriguing patterns that we have called Kasner
seasons.
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Outlook

I Some future avenues:

@ Understanding structure of Kasner seasons in D > 5.
@ Studying chaotic dynamics.

@ Addition of higher-curvature terms? Kasner eons [Bueno, Cano, Hennigar '24;
Caceres, AJMG, Patra, Pedraza '24].

@ Holographic probes? [Fidkowski, Hubeny, Kleban Shenker '03; Jgrstad, Myers, Ruan '24;
Arean, Jeong, Pedraza, Qu '24].

iMuchas gracias!



