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Oscillatory approach to singularity

In the 60’s: are singularities of GR solutions due to their high degree of symmetry,
or a general feature of the theory?

Hawking-Penrose singularity theorems: gravitational collapse of physically sensible
matter in GR leads to the formation of singularities [Penrose ’65; Hawking, Penrose ’70].

Cosmological singularities: oscillatory approach to singularity, of chaotic nature
[Misner ’69; Belinski, Khalatnikov, Lifshitz ’70]: BKL oscillations.

Approaching the singularity: dynamics become ultra-local and spatial derivatives are
negligible wrt temporal ones.
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Kasner dynamics

Near singularity, space-time looks like Kasner solution:

ds2 = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2 , p1 + p2 + p3 = p21 + p22 + p23 = 1 .

The parameters pi are Kasner exponents.

Motion restricted in parameter space to equilateral
triangle:

1 Each straight line: Kasner epoch with fixed
pi.

2 Each bounce produces changes of exponents.
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Sequence of Kasner epochs: distances along two axes oscillate, decrease mono-
tonically along the third.

Change of Kasner era: axis along which distances decrease is exchanged.
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BKL oscillations & billiards

BKL oscillations arose originally in pure gravitational context:

ds2 = −dt2 +
3∑

i=1

t2pi(x)(ωi)2 , ωi = lijdx
j .

Curvature walls produce bounces between epochs and eras: Mixmaster model.

Dynamics correspond to hyperbolic reflections in a hyperbolic billiard [Damour, Hen-

neaux, Nicolai ’02]. Equivalent picture as motion restricted in equilateral triangle in
Euclidean space.

Curvature walls are not required: billiard walls may be also due to electric/magnetic
walls [Damour, Henneaux ’00].
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BKL oscillations in BHs

BKL dynamics have been thoroughly examined in cosmological backgrounds
[e.g. Erickson, Wesley, Steinhardt, Turok ’03; Heinzle, Uggla, Rohr ’07; Montani, Battisti, Benini, Impo-

nente ’07; Bakas, Bourliot, Lüst, Petropoulos ’09...]

Only quite recently, it has been possible to find BKL oscillations inside BH interiors
[De Clerck, Hartnoll, Santos ’23]. Remember Marine’s talk!

They consider the following theory in D = 4:

L = R− 1

4

2∑
i=0

[
F 2
i + 2µ2

iA
2
i

]
+

6

ℓ2
.

and AdS BH ansatz:

ds2 =
1

z2

(
−F (z)e−2H(z)dt2 +

dz2

F (z)
+ e−2G(z)dx2 + e2G(z)dy2

)
,

A0 = ϕt(z)dt , A1 = ϕx(z)dt , A2 = ϕy(z)dy .

Horizons: zeros of F (z).
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BKL oscillations in BHs

L = R− 1

4

2∑
i=0

[
F 2
i + 2µ2

iA
2
i

]
+

6

ℓ2
.

Take µ2
1 or µ2

2 to be negative. Allowed by AdS asymptotics as long as BF bound
is respected.

BH has single horizon and space-like singularity.

BKL dynamics develop in deep BH interior: billiard given by electric walls.
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4-dimensional BKL oscillations in AdS black holes

Both in Mixmaster and BH models, collision laws for Kasner exponents before and
after bounces are exactly the same.

Let p3 ≥ p2 ≥ p1. Kasner exponents (p′3, p
′
2, p

′
1) after a bounce read:

p′3 =
p3 + 2p1
1 + 2p1

, p′2 =
p2 + 2p1
1 + 2p1

, p′1 =
−p1

1 + 2p1
.

Using parameter u ≥ 1 [Belinski, Khalatnikov, Lifshitz ’70]:

p3 =
u(1 + u)

1 + u+ u2
, p2 =

1 + u

1 + u+ u2
, p1 =

−u

1 + u+ u2
, p3 ≥ p2 ≥ p1 .

Before bounce

(p3, p2, p1) = (p3(u), p2(u), p1(u)) .

After bounce

Within same Kasner era (u ≥ 2):

(p3, p2, p1) = (p3(u− 1), p1(u− 1), p2(u− 1)) .

Change of Kasner era (2 ≥ u ≥ 1):

(p3, p2, p1) = (p2(u
′
), p1(u

′
), p3(u

′
)) , u

′
=

1

u − 1
.



;

4-dimensional BKL oscillations in AdS black holes

Both in Mixmaster and BH models, collision laws for Kasner exponents before and
after bounces are exactly the same.

Let p3 ≥ p2 ≥ p1. Kasner exponents (p′3, p
′
2, p

′
1) after a bounce read:

p′3 =
p3 + 2p1
1 + 2p1

, p′2 =
p2 + 2p1
1 + 2p1

, p′1 =
−p1

1 + 2p1
.

Using parameter u ≥ 1 [Belinski, Khalatnikov, Lifshitz ’70]:

p3 =
u(1 + u)

1 + u+ u2
, p2 =

1 + u

1 + u+ u2
, p1 =

−u

1 + u+ u2
, p3 ≥ p2 ≥ p1 .

Before bounce

(p3, p2, p1) = (p3(u), p2(u), p1(u)) .

After bounce

Within same Kasner era (u ≥ 2):

(p3, p2, p1) = (p3(u− 1), p1(u− 1), p2(u− 1)) .

Change of Kasner era (2 ≥ u ≥ 1):

(p3, p2, p1) = (p2(u
′
), p1(u

′
), p3(u

′
)) , u

′
=

1

u − 1
.



;

4-dimensional BKL oscillations in AdS black holes

Both in Mixmaster and BH models, collision laws for Kasner exponents before and
after bounces are exactly the same.

Let p3 ≥ p2 ≥ p1. Kasner exponents (p′3, p
′
2, p

′
1) after a bounce read:

p′3 =
p3 + 2p1
1 + 2p1

, p′2 =
p2 + 2p1
1 + 2p1

, p′1 =
−p1

1 + 2p1
.

Using parameter u ≥ 1 [Belinski, Khalatnikov, Lifshitz ’70]:

p3 =
u(1 + u)

1 + u+ u2
, p2 =

1 + u

1 + u+ u2
, p1 =

−u

1 + u+ u2
, p3 ≥ p2 ≥ p1 .

Before bounce

(p3, p2, p1) = (p3(u), p2(u), p1(u)) .

After bounce

Within same Kasner era (u ≥ 2):

(p3, p2, p1) = (p3(u− 1), p1(u− 1), p2(u− 1)) .

Change of Kasner era (2 ≥ u ≥ 1):

(p3, p2, p1) = (p2(u
′
), p1(u

′
), p3(u

′
)) , u

′
=

1

u − 1
.



;

4-dimensional BKL oscillations in AdS black holes

Both in Mixmaster and BH models, collision laws for Kasner exponents before and
after bounces are exactly the same.

Let p3 ≥ p2 ≥ p1. Kasner exponents (p′3, p
′
2, p

′
1) after a bounce read:

p′3 =
p3 + 2p1
1 + 2p1

, p′2 =
p2 + 2p1
1 + 2p1

, p′1 =
−p1

1 + 2p1
.

Using parameter u ≥ 1 [Belinski, Khalatnikov, Lifshitz ’70]:

p3 =
u(1 + u)

1 + u+ u2
, p2 =

1 + u

1 + u+ u2
, p1 =

−u

1 + u+ u2
, p3 ≥ p2 ≥ p1 .

Before bounce

(p3, p2, p1) = (p3(u), p2(u), p1(u)) .

After bounce

Within same Kasner era (u ≥ 2):

(p3, p2, p1) = (p3(u− 1), p1(u− 1), p2(u− 1)) .

Change of Kasner era (2 ≥ u ≥ 1):

(p3, p2, p1) = (p2(u
′
), p1(u

′
), p3(u

′
)) , u

′
=

1

u − 1
.



;

4-dimensional BKL oscillations in AdS black holes

Both in Mixmaster and BH models, collision laws for Kasner exponents before and
after bounces are exactly the same.

Let p3 ≥ p2 ≥ p1. Kasner exponents (p′3, p
′
2, p

′
1) after a bounce read:

p′3 =
p3 + 2p1
1 + 2p1

, p′2 =
p2 + 2p1
1 + 2p1

, p′1 =
−p1

1 + 2p1
.

Using parameter u ≥ 1 [Belinski, Khalatnikov, Lifshitz ’70]:

p3 =
u(1 + u)

1 + u+ u2
, p2 =

1 + u

1 + u+ u2
, p1 =

−u

1 + u+ u2
, p3 ≥ p2 ≥ p1 .

Before bounce

(p3, p2, p1) = (p3(u), p2(u), p1(u)) .

After bounce

Within same Kasner era (u ≥ 2):

(p3, p2, p1) = (p3(u− 1), p1(u− 1), p2(u− 1)) .

Change of Kasner era (2 ≥ u ≥ 1):

(p3, p2, p1) = (p2(u
′
), p1(u

′
), p3(u

′
)) , u

′
=

1

u − 1
.



;

Higher-dimensional BKL oscillations in AdS black holes

Is it possible to generalize the BH construction to obtain BKL dynamics for D ≥ 5?
How?

Are subsequent Kasner dynamics going to be equivalent to that in higher-
dimensional Mixmaster model?

If not equivalent, how different will be structure of Kasner epochs and eras?
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Higher-dimensional Mixmaster model

For general space-time dimension D ≥ 5:

ds2 = −dt2 +

D−1∑
i=1

t2pi(x)(ωi)2 , ωi = lijdx
j .

Near the singularity: dynamics become ultra-local → BKL dynamics for D ≤ 10.

Kasner exponents are constant and satisfy [Demaret, Henneaux, Spindel ’85]:

D−1∑
i=1

pi =

D−1∑
i=1

p2i = 1 .

Dynamics of Kasner exponents bounded by curvature walls. If pD−1 ≥ pD−1 ≥ ... ≥
p1, collision law for exponents before pi and after p′i [Demaret et al ’85]:

p′1 =
−p1 − P

1 + 2p1 + P
, p′D−2 =

pD−2 + P + 2p1
1 + 2p1 + P

, p′D−1 =
pD−1 + P + 2p1
1 + 2p1 + P

p′j =
pj

1 + 2p1 + P
, j = 2, . . . , D − 3 , P =

D−3∑
i=2

pi .



;

Higher-dimensional Mixmaster model

For general space-time dimension D ≥ 5:

ds2 = −dt2 +

D−1∑
i=1

t2pi(x)(ωi)2 , ωi = lijdx
j .

Near the singularity: dynamics become ultra-local → BKL dynamics for D ≤ 10.

Kasner exponents are constant and satisfy [Demaret, Henneaux, Spindel ’85]:

D−1∑
i=1

pi =

D−1∑
i=1

p2i = 1 .

Dynamics of Kasner exponents bounded by curvature walls. If pD−1 ≥ pD−1 ≥ ... ≥
p1, collision law for exponents before pi and after p′i [Demaret et al ’85]:

p′1 =
−p1 − P

1 + 2p1 + P
, p′D−2 =

pD−2 + P + 2p1
1 + 2p1 + P

, p′D−1 =
pD−1 + P + 2p1
1 + 2p1 + P

p′j =
pj

1 + 2p1 + P
, j = 2, . . . , D − 3 , P =

D−3∑
i=2

pi .



;

Higher-dimensional Mixmaster model

For general space-time dimension D ≥ 5:

ds2 = −dt2 +

D−1∑
i=1

t2pi(x)(ωi)2 , ωi = lijdx
j .

Near the singularity: dynamics become ultra-local → BKL dynamics for D ≤ 10.

Kasner exponents are constant and satisfy [Demaret, Henneaux, Spindel ’85]:

D−1∑
i=1

pi =

D−1∑
i=1

p2i = 1 .

Dynamics of Kasner exponents bounded by curvature walls. If pD−1 ≥ pD−1 ≥ ... ≥
p1, collision law for exponents before pi and after p′i [Demaret et al ’85]:

p′1 =
−p1 − P

1 + 2p1 + P
, p′D−2 =

pD−2 + P + 2p1
1 + 2p1 + P

, p′D−1 =
pD−1 + P + 2p1
1 + 2p1 + P

p′j =
pj

1 + 2p1 + P
, j = 2, . . . , D − 3 , P =

D−3∑
i=2

pi .



;

Higher-dimensional Mixmaster model

Using D − 3 parameters {ui}D−3
i=1 , define: [Elskens, Henneaux ’87]:

pD−1 =
s− 1

s
, pD−2 =

1 +
∑D−3

j=1 ui

s
, pD−2−i =

−ui

s
,

with s(ui) =
1 +

∑D−3
j=1 u2

j +
(
1 +

∑D−3
j=1 uj

)2
2

, and u1 ≥ u2 ≥ ... ≥ uD−3 .

In appropriate parameter region, pD−1 ≥ pD−2 ≥ ...p1.

Let pD−1 = pD−1(ui), pD−2 = pD−2(ui), . . . , p1 = p1(ui). Two types of transitions:

1 Transition of Kasner epochs. p′D−1 = pD−1(u1 − 1, uj) is largest Kasner expo-
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Mixmaster dynamics inside higher-dimensional AdS BHs

Let us find BKL dynamics in BH interiors for D ≥ 5. Consider (D − 1)-dimensional
massive vector fields:

L = R− 1

4

D−2∑
j=0

[
F 2
j + 2µ2

jA
2
j

]
+

(D − 1)(D − 2)

ℓ2
,

and an AdS BH ansatz:

ds2 =
1

z2

(
−Fe−2Hdt2 +

dz2

F
+

D−3∑
i=1

e−Gi

(
dxi
)2

+ ef(Gi)
(
dxD−2

)2)
,

A0 = ϕt(z)dt , Ai = ϕi(z)dxi , i = 1, . . . , D − 2 .

with F,H,Gi, ϕt and ϕi functions of z. Note: (D − 1) independent functions
{F,H,Gi} and (D − 1) independent functions {ϕt, ϕi}.

If at least one µ2
i < 0 (and above BF bound) → absence of inner horizon.
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Mixmaster dynamics inside higher-dimensional AdS BHs

Near BH singularity: BKL oscillations arise.
Dynamics governed by Kasner regimes alternated
by jumps of Kasner exponents pi:

D−1∑
i=1

pi =

D−1∑
i=1

p2i = 1 .

Motion restricted to a (D − 2)-dimensional
simplex!

In D = 4 an equilateral triangle, in D = 5 a
tetrahedron...

Out[ ]=

f0
ρ

f1
ρ

f2
ρ

Bounces created by electric walls. No gravitational walls involved. Dynamics is
chaotic for all D! [Damour, Henneaux ’00].
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Mixmaster dynamics inside higher-dimensional AdS BHs

Bouncing rule for Kasner exponents → if pD−1 ≥ pD−2 ≥ ... ≥ p1:

p′i =
pi + ap1
1 + ap1

, i ̸= 1 , p′1 = − p1
1 + ap1

, a =
2

D − 3
.

It matches exactly the collision law for exponents in homogeneous cosmological
backgrounds [Benini, Kirillov, Montani ’05].

Collision law different with that of Mixmaster model with curvature walls. Electric
walls lead to different bouncing rules for exponents in D ≥ 5!
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Mixmaster dynamics in five-dimensional AdS BHs

Analyze Kasner dynamics in deep BH interior for D = 5. Assume Kasner epoch
p4 ≥ p3 ≥ p2 ≥ p1. Kasner exponents p′i after bounce may satisfy:

1 p′4 ≥ p′1 ≥ p′3 ≥ p′2.

2 p′4 ≥ p′3 ≥ p′1 ≥ p′2.

3 p′1 ≥ p′4 ≥ p′3 ≥ p′2.

Last ordering: direction of largest Kasner exponent is swapped → change of
Kasner era.

Other two: bounces within same Kasner era.

Using parameters (u, v) on appropriate domain D of definition:

p4 = 1− 1

s
, p3 =

1 + u+ v

s
, p2 = −u

s
, p1 = −v

s
,

s = 1 + u+ v + u2 + v2 + uv .
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Mixmaster dynamics in five-dimensional AdS BHs

Let us visualize Kasner era in D = 5 in terms of (u, v) parameters:

Within Kasner era, identify new substructure: Kasner seasons. Defined as sequences
of Kasner epochs sharing same pattern of orderings of new exponents:

1 Kasner season 1: If p4 ≥ p3 ≥ p2 ≥ p1, then p′4 ≥ p′1 ≥ p′3 ≥ p′2.

2 Kasner season 2: If p4 ≥ p3 ≥ p2 ≥ p1, then p′4 ≥ p′3 ≥ p′1 ≥ p′2 and
p′′4 ≥ p′′2 ≥ p′′3 ≥ p′′1 .
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Mixmaster dynamics in higher-dimensional AdS BHs

Kasner seasons arise for any D ≥ 5. A maximum of D − 3 distinct Kasner seasons
may be identified.

Kasner seasons are not exclusive of electric walls, nor just arise in BH interiors.
Mixmaster model in D ≥ 5 with curvature walls features Kasner seasons.

For Mixmaster model in D = 5 (gravitational walls):

In D = 5, looks as if:

√
Gravitational Walls ∼ Electric Walls

Explicitly proved this is the case
for bouncing rules of exponents in
D = 5.
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Conclusions

Take-home message: BKL dynamics arise inside higher-dimensional AdS BHs.

Key ingredient: D−1 massive vector fields with at least one µ2
i < 0 creating electric

walls.

Kasner exponents move within (D − 2)-dimensional simplex.

Structure of Kasner eras reveals intriguing patterns that we have called Kasner
seasons.
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Outlook

Some future avenues:

Understanding structure of Kasner seasons in D ≥ 5.

Studying chaotic dynamics.

Addition of higher-curvature terms? Kasner eons [Bueno, Cano, Hennigar ’24;

Cáceres, ÁJMG, Patra, Pedraza ’24].

Holographic probes? [Fidkowski, Hubeny, Kleban Shenker ’03; Jørstad, Myers, Ruan ’24;

Areán, Jeong, Pedraza, Qu ’24].

¡Muchas gracias!
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