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The University of Texas at Austin

June 2025

JHEP 08 (2022) 236, JHEP 01 (2023) 007, Phys.Rev.D 109 (2024),
JHEP 02 (2024) 019 12, JHEP 07 (2024) 052, JHEP 12 (2024) 077,

arXiv:250X.XXXXX
R. Castillo, H. Krishna, A. Kundu, K. Landsteiner, A. Murcia, A. Patra,

J. Pedraza, I. Salazar-Landea, S. Shashi



2

Black hole interiors

conceptual aspects of classical and quantum gravity
physics at the singularity (classical)
instabilities
Holographic implications?
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Holographic probes of the black hole interior

2-point functions encoded by geodesics [Balasubramanian, Ross ]

RT/HRT proposal: encoded by minimal codimension-2
bulk surfaces [Ryu, Takayanagi 2006] [Hubeny, Rangamani, Takayanagi

2007]

Complexity = Volume (CV): encoded by maximal
codimension-1 bulk slice [Susskind 2014] [Susskind, Stanford 2014]

Complexity = Action (CA): encoded by the action
evaluated on Wheeler-deWitt patch [Brown, Roberts, Susskind,

Swingle, Zhao 2016]

Complexity =Anything [Belin, Myers, Ruan, Sárosi, Speranza 2022]
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Not all of these quantities “see” the full interior –up to

the singularity

In d ≥ 2 for CV and d ≥ 3 for EE : extremal surface

barriers block surfaces from reaching singularity [Wall

2014] [Engelhardt, Wall 2014]

•◦

•◦
•◦tb tb
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Today:

Holographic thermal a-function as a probe of the interior

Near singularity behavior

Early stage idea: Wheeler de Witt states and RG flows in

the interior
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Holographic RG flows into a black hole



Holographic RG flows into a black hole 9

Holography:

Radial direction ↔ energy

Holographic RG flow UV-IR / boundary -horizon [de Boer,

Verlinde, Verlinde 1999]

RG flows at finite temperature

[Gursoy, Kiritsis, Nitti, Silva Pimenta 2018][Bea, Mateos 2018]

”RG” flow into the black hole? Trans-IR

Here: NEC → monotonic function in the interior

QFT interpretation? Open question.



Counting Degrees of Freedom

Holographic RG flows into a black hole 10

Count degrees of freedom along flow
with a monotonically decreasing
function of energy

Zamolodchikov c-theorem (d = 2)

Evaluates to central charge at
fixed points. cUV > cIR

Cardy a-theorem (d = 2n) Proven for
d = 4 [Komardoski,Schwimmer 2011]

Evaluates to trace anomaly
coefficient at fixed points
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Holographic History RG Flows

In AdS/CFT, adding matter sector to bulk is dual to

deforming boundary CFT

Example: Scalar field ϕ is dual to operator O∫
dd+1X

√
|g| [∇µϕ∇µϕ+ V (ϕ)]←→

∫
ddxϕ0O

Relevant deformations trigger RG flows

Flow is encoded by classical bulk dynamics

[Balasubramanian, Kraus 1999] [de Boer, Verlinde, Verlinde 2000]
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a-function for vacuum states
[Freedman, Gubser, Pilch, Warner 1999][Henningson,Skenderis 1998]

Consider d+ 1 metric Poincare invariant in d dim.

ds2 = e2A(ρ)
(
−dt2 + dx⃗2

)
+dρ2, ((t, x⃗) ∈ Rd, ρ ≥ 0)

AdSd+1 with curvature ℓ when A(ρ) = ρ/ℓ
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aUV =
πd/2

Γ
(
d
2

) ( ℓ

ℓP

)d−1

=
πd/2

Γ
(
d
2

)
ℓd−1
P

[
1

A′(ρ)

]d−1

≡ a(ρ)

For general eA(ρ) and Einstein gravity, Null Energy
Condition (NEC) [Myers, Sinha 2010–11]

Tµν k
µ kν ≥ 0

implies monotonicity of a(ρ)



RG flows into the black hole

Holographic RG flows into a black hole 14

AdS/CFT: energy scale is the bulk radial extra dimension

black holes

RG flow of some UV thermal state (bdry.) to IR
(horizon)
In the interior the radial coordinate becomes timelike
=⇒ trans-IR [Frenkel, Hartnoll, Kruthoff, Shi 2020]

ρ

• •◦ ◦

Im

Re
UVIR

Conventional RGT
ra
ns
-I
R

•◦ ▲

▲
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[Caceres, Kundu, Patra, Shashi]

To probe trans-IR, need to use a black hole geometry

Consider

ds2 = e2A(ρ)
(
−f(ρ)2dt2 + dx⃗2

)
+ dρ2,

Exterior is (t, x⃗) ∈ Rd, ρ ≥ 0, with horizon at ρ = 0
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The interior is accessed via analytic continuation
[Fidkowski, Hubeny, Kleban, Shenker 2003] [Grinberg, Maldacena 2021]

ρ = iκ

Using NEC we can prove that

aT (ρ) ≡
πd/2

Γ
(
d
2

)
ℓd−1
P

[
f(ρ)

A′(ρ)

]d−1

is monotonic along all the flow



Monotonicity
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Use Schawrzchild-like coordinates

ds2 =
1

r2

[
−F (r)e−χ(r)dt2 +

dr2

F (r)
+ dx⃗2

]

e2A(ρ) =
1

r2
, f(ρ)2 = F (r)e−χ(r),

dr

dρ
= −r

√
F (r)

⇒

aT (r) =
πd/2

Γ
(
d
2

)
ℓd−1
P

e−(d−1)χ(r)/2

Bdy. at r = 0

Horizon at rh and F (r)|r≤rh ≥ 0, F (r)|r≥rh ≤ 0



Monotonicity
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For Einstein gravity Gµν − d(d−1)
2

gµν = ℓd−1
P Tµν ,

NEC implies
daT
dr
≤ 0 for all r

Example: Einstein + Free Scalar Theory

IS = − 1

4ℓd−1
P

∫
dd+1x

√
−g

(
∇αϕ∇αϕ+m2ϕ2

)
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ϕ = ϕ(r) dual to relevant operator O with dimension ∆,

IO =

∫
ddxϕ0O

Schwarzschild-like metric ansatz with horizon r = rh

ds2 =
1

r2

[
−F (r)e−χ(r)dt2 +

dr2

F (r)
+ dx⃗2

]
, (r ∈ R)

Exterior: r ≤ rh (F ≥ 0); Interior: r ≥ rh (F ≤ 0) .
Bdry at r = 0
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Solve numerically for F, χ, ϕ

Solutions labeled by “strength” of deformation measured

by the dimensionless parameter ϕ0/T
d−∆



Plotting aT
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Monotonicity of aT

aT (r) =
πd/2

Γ
(
d
2

)
ℓd−1
P

e−(d−1)χ(r)/2

d = 3, ∆ = 2, aT , for various deformations
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As we approach singularity (r →∞) we have aT → 0

aT (r) ∼ r−(d−1)2q2/2

where q is a function of pt and d

Near-singularity geometry, Kasner exponents
ds2 ∼ −dτ 2 + τ 2ptdt2 + τ 2pxdx̄ –more later
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Is the monotonic trans IR a-function an artifact of having too
much symmetry? Study Non-isotropic RG flows [D.Giataganas, U.

Gürsoy, J.F. Pedraza 2018][C.S. Chu, D. Giataganas 2020]
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Non-isotropic Trans-IR Consider a background that breaks
the rotational symmetry of the constant-ρ slices,

ds2 = e2A(ρ)
[
−f(ρ)2dt2 + e2X (ρ)dx⃗2

1 + dx⃗2
2

]
+ dρ2

Asymptotically AdS

A(ρ) ∼ ρ

ℓ
(ρ→∞), lim

ρ→∞
X (ρ) = 0, lim

ρ→∞
f(ρ) = 1.
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Key observation: if NEC along kµ =
e−A(ρ)

f(ρ)
∂µ
t + ∂µ

ρ can be

written as

C(ρ) d
dρ

[ã(ρ)]−K(ρ)2 ≥ 0,

where C(ρ) is manifestly positive outside the horizon.
=⇒

d

dρ
[ã(ρ)] ≥ K(ρ)

2

C(ρ)
≥ 0.

=⇒ ã(ρ) is a candidate a-function.
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Consider d+ 1 dimensional space, d1 + d2 = d− 1

ds2 = e2A(ρ)
[
−f(ρ)2dt2 + e2X (ρ)dx⃗21 + dx⃗22

]
+ dρ2

we have,

C(ρ) = 1

(d− 1)f(ρ)

[
d1
(
A′(ρ) + X ′(ρ)

)
+ d2A

′(ρ)
]2

ed1X (ρ)/(d−1),

K(ρ) =
√

d1d2
d− 1

X ′(ρ).

→ the monotonic a-function is,

a(ρ) ∼ e−d1X (ρ)

[
(d−1)f(ρ)

d1
(
A′(ρ)+X ′(ρ)

)
+d2A′(ρ)

]d−1
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Example: p-wave superfluid
[M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon 2010]

(4 + 1)-dimensional Einstein-Yang-Mills theory with SU(2)
gauge symmetry whose bulk action is (setting ℓ = 1)

IEYM =

∫
d5x
√
−g

[
1

2ℓ3P
(R + 12)− 1

4ĝ2
F a
µνF

aµν

]
.

a = 1, 2, 3 are SU(2) indices
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ds2 = e2A(ρ)
[
−f(ρ)2dt2 + e2X (ρ)dx2 + dy2 + dz2

]
+ dρ2

The a-function is

a
(1)
T (ρ) ∼ e−X (ρ)

[
f(ρ)

A′(ρ) + 1
3
X ′(ρ)

]3
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daT
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Approach to the singularity [Cai, Ge, Li, Yang 2022][Sword, Vegh

2022]
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Near singularity
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In the simple case of Einstein gravity + free scalar

I =

∫
d4x
√
−g

(
R+ 6− ∂αϕ∂αϕ−m2ϕ2

)
with solution, ds2 =

1

r2

[
−F (r)e−χ(r)dt2 +

dr2

F (r)
+ dx⃗2

]
Near-singularity (r →∞) geometry is Kasner-like

ds2 ∼ −dτ 2 + τ 2ptdt2 + τ 2px(dx2 + dy2)

pt + 2px = 1, p2ϕ + p2t + 2p2x = 1

ϕ ∼ −
√
2pϕ log τ



Near singularity 32

(free) Kasner flows [Frenkel, Hartnoll, Kruthoff, Shi ] [Caceres, Kundu,

Patra, Shashi ]

AdS-Schwarzchild corresponds to pt = −1
3
, px = py =

2
3

and pϕ = 0



Toward Generic Singularities: BKL Picture

Near singularity 33

Belinski, Khalatnikov, Lifshitz (BKL): structure of
generic spacelike singularities.

Kasner universe with changing parameters

Evolution is oscillatory and chaotic (”Mixmaster
behavior”).
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Many developments:

Bouncing universes; super-exponential potential
[Hartnoll,Neogi 2022]. Thermal a-function in bouncing interiors
[Caceres, Patra, Pedraza 2023]

Mixmaster in D = 4, 3 gauge fields –Marine’s talk

[De Clerck, Hartnoll, Santos 2023]

Lovelock gravity, no matter [Bueno, Cano, Hennigar, Li 2024]

Mixmaster behavior with higher derivatives? Open
question

First: Mixmaster chaos in higher dimensions –Angel’s talk
[Caceres, Murcia, Patra, Pedraza ]



Kasner exponents in Lovelock theories
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In vacuum higher derivative theories:

Periods where a specific Higher derivative term
dominates : eons [Bueno,Cano, Hennigar 2024]

For example, for Gauss-Bonnet gravity,

L =
Λ0

ℓ2
+R + λ2ℓ

2(R2 − 4RµνR
µν +RµνσρR

µνσρ)

close to the singularity

ds = −dτ 2 + τ 2pt +
d−1∑
i=1

τ 2pi dx2
i
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Example:
in Gauss Bonnet gravity in 5 dimensions, peff ≡ rf ′(r)

2f(r)−rf ′(r)

If we are interested in the a-function → add matter



Thermal RG flows in higher derivative theories

Near singularity 37

In higher derivative theories we have two different possible
conditions to impose,
NEC

kµkνTµν ≥ 0

NCC
kµkνRµν ≥ 0

=⇒ two different a-functions
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Let’s look at a concrete case

In quasi-topological gravities, d ≥ 4 [Oliva,Ray

2010][Myers,Robinson 2010]

I =

∫
dd+1x

√
−g(R+ d(d− 1) +

∞∑
n=2

λnZ(n))
HD terms

the coefficients of HD terms are chosen such that for
one-function, f(r), static bh the eom are first-order in
derivatives [Bueno, Cano, Moreno, Murcia 2019][Moreno, Murcia 2023]
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−λ0

ℓ2
+

∞∑
n=1

λn(−1)n(d+1−2n)(dℓ2f(r)(d+1))n−1
(
nrf ′(r)− d f(r)

)
= 0 .

Quasi-topological gravity of order 5, without matter, n = 5, d = 5

Goal:

Add matter → we expect the behavior close to the
singularity will change

study NEC and NCC a-function, do both see the change
close to the singularity
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We want to add matter → look for a subset of QT gravities such
that the solutions involve f(r) and χ(r) and eom are still first
order (solve numerically)

I =

∫
dd+1x

√
−g[R+ d(d− 1) +

∞∑
n=2

λnZ(n) −
1

2
(∂ϕ)2 − 1

2
m2ϕ2]

ds2 =
1

r2

(
−f(r)e−χ(r)dt2 +

dr2

f(r)
+ dx⃗2d−1

)
, ϕ = ϕ(r)

The coefficients of Z(n) can be chosen so that the EOMs are first
and second order. Solve numerically Close to the singularity,
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r2fϕ′′ =
1

2
r ϕ′ (f (rχ′ + 2(d− 1))− 2rf ′) + V ′(ϕ(r)) .

χ′ =
r(ϕ′)2∑∞

n=1 λ̃nℓ2(n−1)fn−1
,

f ′ =
−2λ0 + 2ℓ2V (ϕ(r)) + 2d

∑∞
n=1

ℓ2nλ̃n

n fn + ℓ2fr2(ϕ′)2

2r
∑∞

n=1 ℓ
2nλ̃nfn−1

,

Close to the singularity,

ds2 = −dτ2 + τ2ptdt2 + τ2pxdx2
d−1
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Matter significantly changes the behavior close to the
singularity
[Caceres, Murcia, Patra, Pedraza 2024]
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Thermal RG-flows [Caceres, Murcia, Patra, Pedraza 2024]

Imposing NEC,

aET (r) ∝ exp

(
− (d− 1)

2
χ− 1

2

∞∑
n=2

λ̃n

∫
f (n−1)χ′dr

)

where λ̃n are rescaled couplings

Imposing NCC,

aCT (r) ∝ exp

(
− (d− 1)

2
χ

)
.
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Can the thermal a-function “see” the behavior of
Kasner exponents? Yes!
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the a-function is a diagnostic tool of HD effects close to
the singularity
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The interior
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Wheeler-DeWitt states of the AdS-Schwarzschild interior
[Hartnoll 2022]

Solved the Wheeler-DeWitt equation for the planar
AdS-Schwarzschild interior
Constructed a Gaussian wavepacket that peaks on
the classical interior
.....

To make contact with RG flows, add a scalar
[Early stage WIP with Hare Krishna 2025]
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Brief review of the setup in [Hartnoll 2022]

S =

∫
d4x
√
−g(R + 6) + 2

∫
d3x
√
γK

Ansatz,

ds2 = −Ndz2 + v2/3(e4k/3dt2 + e−2k/3(dx2 + dy2))

Lagrangian density,

L = 6Nv +
2

3

v2(∂rk)
2 − (∂rv)

2

Nv
.



The interior 50

• N imposes the a constraint, in terms of momenta

- π2
k + v2π2

v + 16v2 = 0

• Hamilton-Jacobi, let πk =
∂S
∂k
, πv =

∂S
∂v
⇒ Hamiltonian

constraint is

−(∂kS)2 + v2(∂vS)
2 + 16v2 = 0

Solve,
S(v, k; ko) = 4v sinh [k + ko]

Aside:As usual in Hamilton-Jacobi theory, the general solution to eoms is
obtained by solving ∂ko

S = εo
→ v = εo

4 sech [k + ko]⇐ this is Schwz-AdS
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Wheeler-de Witt equation: canonical quantization of
Hamiltonian constraint
• Promote πk → i ∂

∂k
, iπv → ∂

∂v

∂2
kΨ− v∂v (v∂vΨ) + 16v2Ψ = 0

Ψ = eiS(v,k;k0),

Build wave packet, etc.
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To make contact with RG flows, add matter

S =

∫
d4x
√
−gR + 2

∫
d3x
√
γK + Sm

V (ϕ) ∼ − 6

ℓ2
+

1

2
m2ϕ2 + · · ·

Ansatz,

ds2 = −eα(z)dz2 + γµνdx
µdxν

γµνdx
µdxν = e2βx(z)dx2 + e2βy(z)dy2 + e2βt(z)dt2
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S = −2
∫

d4x
√
γe2αz(z)(β′

t(z)
(
β′
x(z) + β′

y(z)
)
+ β′

x(z)β
′
y(z))

+ Smatter

Redefine linear combinations, βi → β̄i.

S = −2
∫

d4x
√
γe2αz(z)(β̄′

t(z)
2 + β̄′

x(z)
2 + β̄′

y(z)
2) + Smatter

Conjugate momenta,

πβ̄t
=

∂L

∂ β̄′
t

= −2β̄′
t, πβ̄x

=
∂L

∂ β̄′
x

= 2β̄′
x, πβ̄y

=
∂L

∂ β̄′
y

= 2β̄′
y



The interior 54

The Hamiltonian constraint is

−1
4
π2
β̄t
+ 1

4
π2
β̄x

+ 1
4
π2
β̄y

+ 1
2
π2
ϕ + V (ϕ) = 0

Use Hamilton-Jacobi to write conjugate momenta as the
variation of the on-shell action with respect to dynamical
fields,

πβ̄t
=

δS

δ β̄t

, πβ̄x
=

δS

δ β̄x

, πβ̄y
=

δS

δ β̄y

, πϕ =
δS

δϕ
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1

4

( δS

δ β̄t

)2

+
1

4

( δS

δ β̄x

)2

+
1

4

( δS

δ β̄y

)2

+
1

2

(δS
δϕ

)2

+ V (ϕ) = 0

Note that,

Close to the singularity βi ∼ Kasner exponentspi

Quantum cosmology with a scalar (1980’s) re-interpreted
in holographic context.

.....WIP
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Conclusions and takeaways
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Trans-IR flows seems rather abstract in typical QFT.

Naturally emerge in holographic RG framework as

black hole interiors

We can define an a-function that is monotonic along the

flows, even in anisotropic backgrounds and higher

derivative theories

Trans-IR flow and singularity structure
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We need a better holographic understanding of black hole

interiors/near-singularity geometries with more

complicated matter profiles (BKL analysis )

Scalars with non-minimal couplings

Mixmaster in higher dimensions

Mixmaster and higher derivatives

What does is the trans-IR flow from the boundary

perspective? Connection to WDW states?

Many more questions...
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aT satisfies

We can prove the following

Stationary at horizon:

daT
dρ

∣∣∣∣
hor

= 0

Monotonicity condition:

UV → IR :
daT
dρ
≥ 0,

Trans-IR :
daT
dκ
≤ 0
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Equations of motion with this ansatz:

ϕ′′ +

(
F ′

F
− d− 1

r
− χ′

2

)
ϕ′ +

∆(d−∆)

r2F
ϕ = 0 (4.1)

χ′ − 2F ′

F
− ∆(d−∆)ϕ2

(d− 1)rF
− 2d

rF
+

2d

r
= 0 (4.2)

χ′ − r

d− 1
(ϕ′)2 = 0, (4.3)

Solve numerically for F, χ, ϕ
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βt =
1√
6
(β̄t − β̄x −

√
3β̄y) (4.4)

βx =
1√
6
(β̄t − β̄x +

√
3β̄y) (4.5)

βy =
1√
6
(β̄t + 2β̄x). (4.6)
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A couple of remarks

Both aCT and aET are monotonic but only aET approaches
the zero temperature a-function proposed by [Myers, Paulos,

Sinha ] for QTG

aET (ρ) =

(
h(ρ)

A′(ρ)

)d−1

e−F(h(ρ),h′(ρ),A′(ρ),A′′(ρ))

zero temperature case → h = 1

aET ≈
(

1

A′(ρ)

)d−1(
1−

∞∑
n=2

λ̃n

2n− 2
A′2(n−1)

)
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