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What are Area Metrics?

The metric tensor g,., defines a line element
ds? = guvdxtdz” .

From this we can calculate lengths and distances (L[] = fw ds), areas, ... .
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What are Area Metrics?

The metric tensor g,., defines a line element
ds? = guvdxtdz” .

From this we can calculate lengths and distances (L[y] = fv ds), areas, ... .

Area metrics describe a concept of geometry of area without length, where area is directly

computed from an area element

2006b

Schuller and Wohlf mq
dA® = Guupo (dz" A dz”) - (da” A dz?)

defined by an area metric Gu.po. The area of a surface ¥ is defined as

A[D] = /E dA.
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What are Area Metrics?

dA? = Guvpo (dz* Ada”) - (da” Adz®), A[S] = / dA.
b

Basic properties:

» Index symmetries like Riemann tensor ("algebraic curvature tensor").
» Stick to 4d in this talk: 20 components (metric: 10).

» Every metric implies an area metric, but not every area metric is implied by a

regular metric — generalised notion of geometry.

» Metric case:

Guvap = Gua9uvp — GraJus-
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Motivation(s)

» String Theory: Area metrics are sufficient for Nambu-Goto action { huller and Wohlfarth

2006

» Loop Quantum Gravity may lead to area metrics | 20250 1} .

2025a 2025b

» Area metrics emerge in "second order geometry" '\'“’““ﬂ F"‘“i"‘ W )

» Holography: Is area more fundamental than length? Ryu-Takayanagi formula can be

formulated with area metric bulk:

A(X)
4GN
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Motivation(s)

d slal|ls] 6| 7] s 9 10 2
(5) 3 10| 15 | 21 | 28 | 36 | 45 325
dof(g,u) 6l10[15] 21 [ 28] 36 | 45 | 55 351
dof(Gapns) 6|21 |55 120231 | 406 | 666 | 1035 || 52975
A0f(Gayagassiiss) || 1| 10 | 55 | 210 | 630 | 1596 | 3570 | 7260 || 3381300
dof(Gapss) || 6|20 | 50 | 105 | 196 | 336 | 540 | s25 || 38025

Table 1: Naive degrees of freedom for metrics, area metrics, and volume metrics in various
dimensions.
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Motivation(s)

In AdS/CFT, states with a semiclassical holographic dual description are special.

— Not every state in the theory has an Einsteinian dual geometry:

Space of States (Hilbert space)

States with Einsteinian
dual description
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Motivation(s)
In AdS/CFT, states with a semiclassical holographic dual description are special.

— Not every state in the theory has an Einsteinian dual geometry:

Space of States (Hilbert space)

States with dual description in
terms of a generalised type of
geometry

States with Einsteinian
dual description

Can holography lead to a generalised type of bulk geometry beyond the Einsteinian paradigm?
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Previous approaches

" ] " | Schuller and Wohlfarth [Schuller and Wohlfarth Ho and Inami .
PurZSt approa’Ch |:J(HHM :| 2006b :| [JUH) :| *

» Construct a background independent, covariant theory for area metrics Gagys, which ideally

recovers Einstein gravity in some limit.

» Challenges: Proliferation of indices (F{Zi]]a, ...). But Lagrangian should be a scalar, and

indices can only be contracted with G*#7°.
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Previous approaches

" ] " | Schuller and Wohlfarth [Schuller and Wohlfarth Ho and Inami .
PurZSt approa’Ch |:J(HHM :| 2006b :| [JUH) :| *

» Construct a background independent, covariant theory for area metrics Gagys, which ideally

recovers Einstein gravity in some limit.

» Challenges: Proliferation of indices (F{Zi]]a, ...). But Lagrangian should be a scalar, and

indices can only be contracted with G*#7°.
"Linearised approach" [Lﬁ‘ﬁ_‘») oveeral } :
» Look at linearised area metric fluctuations around fixed metric background.
» Decomposition:
Guvoap = Guagvp — Graguptaumwaes, (a K1)
Qpvap = hgaluguis + 2 (Raudus — Rsugvia) + Wavas-

Metric like fluctuation (hnag, hag, 10 dof.), purely area metric like fluctuation wyvag (Weyl
like, 10 dof.).
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Holographic Approach

Ryu and Takayanagi [2006]: Generalisation of the black hole entropy formula, to the calculation of

entanglement entropy:

) Area (€
See(A) = ming, %NA),
where €4 is a bulk surface which is

» extremal,

» codimension-2,

» spacelike,

» and anchored on the asymptotic
boundary such that €4 = 0A.

(boundary)

What happens if bulk geometry is given by an area metric?
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Holographic Approach

For a subregion A with reduced density matrix p, Sr(A) = —Tra[plog(p)]. Let us now look at
small variations parametrized by A: p — p(A) = po + Adp + .... We find the first law of

entanglement

d

A=0

with the modular Hamiltonian Ha = —log(po).

Assuming the validity of the Ryu-Takayanagi formula in the bulk, the first law can be used

to derive the holographic dictionary for the boundary stress tensor T, as well as Einstein’s

equations in the bulk, linearised around AdS P,i‘,*;};““ : ] [Bstient et @ ] M};‘l‘”‘“‘ <6 alk]

Our goal is to do the same with (linearised) area metrics, in order to derive their EOMs from first

principles!
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Holographic Approach
0Spp(A) = §(H.)

—— \\,./
Change of bulk geometry O‘f P2 R2 (T4 (2))

Step by step process followed in “ﬂ‘,;‘;“'” 2 ] ('M peari et al ] [Faulimer et al ] :

» Focus on Ball-shaped boundary regions, closed form expression for 6(H ) in terms of (Tou(Z)).

» Take limit of infinitesimally small balls: RHS ~ (T3 (%)); LHS depends on change of bulk
geometry close to the boundary

= Derive holographic dictionary, leading order in z.

R2—|f—:fo|25

5 (Tt (to, To))

§(HA)r—o =~ 27r/ d*
B(R,z0)

QWRde,Q —

= ﬁ6<Ttt(to,$o)>.

d>—1 .. 6SB(R.wo)

0(Tux(w0)) = 212 R0 Rd ),
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Holographic Approach

» Figure out the leading order z dependence in metric perturbation (AdSs/CFT3). In case of
Length metric, . In case of pure area metric like perturbation (no metric like

1
dOf), Wuvp\ = ;W;,Lllpo' .

» Impose conditions on Tay: T2 = 0; 9,7 =0

= Additional constraints for the fluctuations of the bulk geometry near the boundary.

» Look at balls of finite radius. Corresponding extremal surfaces reach further into the bulk

= Equations for the fluctuations of the bulk geometry.
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Summary of Results (primary)

Holographic dictionary:

8(Tyj) =

3

T67G N

(0)

ij

s

Length metric per-

turbation: h,,

Y

-

Leading order be-

haviour: h,, = z H,,

J

First law of entangle-

ment = Linearised Ein-

stein’s equation for h,,
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Holographic Dictionary

Metric fluctuation:

1
ds® = = (nmndmmdm" + sz) +2Hpmn (2, Z)dx™dz", H <1, Hnn(z,7) = ZZ"HT(,?QL(f)

n
=guvdztdz?, Poincaré -AdS.

= (T(8)) & Heo(F, 2 = 0) + Hyy(Z, 2 = 0) o HY (2).

Pure area metric fluctuation (no metric like part):

1 — — n n —
Guvap = uagvs = Jvagup + ~Wivas(2,2), Wivas(2,T) = > W),

n

= (Tu(@) < Wiats (&, 2 = 0) + Wayey (&, 2 = 0) o< n I W3 ().
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Holographic Dictionary
Metric fluctuation:

1

22

ds® (nmndxmdx" + sz) +2Hpmn(z,)dz™dz™, H < 1.

=guvdztdz?, Poincaré -AdS.

=  (Tpn(@)) & Hn(&,2=0), (T7(@) =0= H(Z,z=0) = 0.

Pure area metric fluctuation (no metric like part):

R
)

1
Guvag = Guagvs — Jragus + ;WMVQB(Z7 x)

= (Tu(Z)) < Wiata (T, 2 = 0) + Wiyey (F, 2 = 0).
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Holographic Dictionary

Metric fluctuation:

ds® = % (nmndacmd:v" + sz) +2Hpmn(z,)dz™dz"™, H < 1.
z

=guvdaxtdz”, Poincaré -AdS.

=  (Tmn(@)) < Hmn(Z, z = 0), (T (%)) = 0= H,,(Z,z=0) = 0.

Pure area metric fluctuation (no metric like part):

1 -
Guvap = Gua9uvp — Gragus + ;W;wozﬁ(zv ),

= (Tn(@)) X Winzna(Z,2 =0), WS.s =0= (T (Z)) =0.
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Bulk Equations

» Linearized Einstein’s equation :

1 1 ., ,
5 (O = VN4 V7V uhuy + YV ohiig) = 59 (Va Vol = Oh = Ryuwh*™) + Al = 0

> Now, we write the Taylor series expansion (hi; = zHij =z z”Hf;)(f)) of the length

metric perturbation function around ¥ = Zo,

1 1

2my  2my q2mg q2my rr(n) _
2mz! 2my! x Yy yacc ay Hij (t7 Zo, yO) ) My (y) = 07

1,

N =

H (67 +T0) = Y

Mg, My

» Generally

85 —6(Ha) =0 = 20,0,H2 > = 02H™ + 92H ™ + (n)(n + 3)(HY + HSY), n>2.

vy

1
= OHyy + 0 Hyw + —0: (20.Hut) — 20,0y Hay = 0
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Bulk equations

Metric fluctuation:

ds® = 1 (nmndxmdx" + sz) +2Hpmn(z,T)dz™dz™, H < 1.

22

=guvdztdz?, Poincaré -AdS.

= 8§Hyy + 83Hm + z%az (z4atht) — 20,0yHzy =0 (tt-component of Einstein’s equations).

Furthermore, {z, u} components = H} =0, and = 0" H,, = 0. (Valid at all orders with radial
gauge h.. =0=h.;)

General implication on {u, v} coordinates
1
= O0Ru, — §gW5R —3guv = 0.
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Area metric equations

Pure area metric fluctuation (no metric like part):

IR
El

1
Guuaﬁ = Guagvp — Guadup + ;Wuvaﬁ(‘Z: LE)

20,0, W2 — _ (aiw‘”‘” + 2w L om0, WD + a,W D) + (n)(n + 1)WY )

txty txtx tyty txtz tytz tztz

2

1 1 271
= _282 (iathmtz) = 78m8nWt'mtn + 8SVI/tztz + - (7(9thth + aZWtZtZ) .
z z zZ \Zz

= V"Vt =0. (u,v=1t,z,9,2).
Possible full covariantization:

= V"Vwyurr = 0. (conformally coupled massless spin-2 field in AdSy).
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Area metric full EOM

» {z,u} component= 0, if = 9° (nij Waib]') = 0 (stress tensor conservation valid at all orders).
Note that the cconformally coupled EOM is not the one arising from Weyl tensor of h,., but

fully area metric dof. wyuxy.

» Turn on huw: Guvag = hGa(ugvip + 2 (ﬁa[ugu]g — iLB[ng]a) + Wpvap. (2-indexed analogue of

Linearised Einstein’s equation)

1
ORuw — QQW‘;R — 3G + V’JV)‘prV =0.

» Possibly appears from variation of length metric dof of a candidate Lagrangian

L = h*?V*V  Wuavs + hO‘BSSEhW + - - - (pure areametric part of L),

where 5(‘:;3’ is the standard Lichnerowicz operator for linearized Einstein gravity in AdSy.

Possible second-order gauge-invariant action in AdSs of the form

Slh,w] = /d4x\/—g [h“”cﬁfffha,@ + WYV wapss + - }
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Summary of Results (NEW)

Pure area metric
perturbation: w,,ap

Y
Holographic dic- Leading or- First law of entangle-
tionary: 6(Ti;) = der behaviour: ment = Conformally
16"1GN nabw‘(ﬁlj L= % efd coupled spin—2 field

in AdS4 sourced by w

Full area metric pertur-
bation: (h 4+ w)uvap
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Back to Motivations

d slal|ls] 6| 7] s 9 10 2
(5) 3 10| 15 | 21 | 28 | 36 | 45 325
dof(g,u) 6l10[15] 2t [ 28] 36 | 45 | 55 351
dof(Gapns) 6|21 |55 120231 | 406 | 666 | 1035 || 52975
A0f(Gayagassiiss) || 1| 10 | 55 | 210 | 630 | 1596 | 3570 | 7260 || 3381300
dof(Gapss) || 6|20 | 50 | 105 | 196 | 336 | 540 | s25 || 38025

Table 2: Naive degrees of freedom for metrics, area metrics, and volume metrics in various
dimensions.
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Next Steps

» Covariantisation: Understand the covariant expression to its full glory a) Killing

vector treament, and b) in terms of auavs-

» Study solutions to the area metric bulk equations — especially black holes and their

thermodynamics!?
» Go from linearized to non-linear equations?

» Higher dimensional generalizations: two ways, foliate codimension-2 areas through
2-dimensional area metric (simpler) or codimension-2 dimensional volume metrics

(harder and more general version of Einstein equations).

4 WORKIN /

# PROGRESS /

T IIII
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Thank you very much )

for your attention




Back-up slides...




Formulas

§A _ |d20' 1 aijklEabGCdaaXiaijachaXm ]
8 Vho

Utilize the basic integrals,

n 2 2 2 2 2
/ dl’dy(Rz 7{32 7y2) 20 m_,y my Rn+ Mg +2my + In,mx,my7 My
Dr

/ dx dy(RQ _ 1‘2 _ yQ)%x27nw+ly27ny+l — R7L+27nm+27ny+4l
Dr

where

(5 + DT(ma + 3)T'(my + 3)
L(5 +me +my +2) '

In,ml.,my —

1
nomet+imy+3s Maly) = 9

(y):07172,"'7

N o
N Ot
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Birefringence

Formulating electromagnetism on an area metric spacetime leads to the prediction of a peculiar
G -Hol t al. Wi .
effect |:2Or{)$se olz et a ] [20811'91’\8!‘} :

Vacuum birefringence (propagation of light is dependent on polarisation).

Why is this noteworthy?
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Cosmic birefringence
Indications of birefringence in Cosmic Microwave Background data:

Improved Constraints on Cosmic Birefringence from the WMAP and Planck Cosmic
Microwave Background Polarization Data

Johannes R. Eskilt*
Institute of Th t Astroph University of Oslo, P.O. Boxz 1029 Blindern, N-0315 Oslo, Norway

Eiichiro Komatsii|
Maz Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-857/8 Garching, Germany and
Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI),
Todai Institutes for Advanced Study, The University of Tokyo, Kashiwa 277-8583, Japan
(Dated: September 13, 2022)

The observed pattern of lincar polarization of the cosmic microwave background (CMB) photons
is a sensitive probe of phys riolating parity symmetry under inversion of spatial coordinates. A
new parity-violating interaction might have rotated the plane of lincar polarization by an angle 3
as the CMB photons have been traveling for more than 13 billion years. This effect is known as
“cosmic birefringence.” In this paper, we present new measurements of cosmic birefringence from
a joint analysis of polarization data from two space missions, Planck and WMAP. This dataset
covers a wide range of frequencics from 23 to 353 GHz We measure 8 = 0.342° 199917 (68% C.L.)
for nearly full-sky data, which excludes 8 = 0 at 99.987% C.L. This corresponds to the statistical
significance of 3.60.| There is no evidence for frequency dependence of 8. We find a similar result,
albeit with a larger uncertainty, when removing the Galactic plane from the analysis.

» 2020 claim: 2.4¢ L\]\J).__,),ﬁxnn and l\muvi\u:|
» 2022 claim: 3.60 {I skilt and Komat ”J

2022

» Official discovery threshold: 50!




Schrodinger’s Black Hole

Schrodinger’s cat is a superposition between two macroscopic states:

b

V2

Since we don’t have a complete understanding of quantum gravity, there is an important open

) = —= (1) + 1)) (+ Alive, J: Dead)

question:

Can two curved spacetimes be put in a quantum superposition? (And how would that look like?)
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Schrodinger’s Black Hole

Schrodinger’s cat is a superposition between two macroscopic states:

- L
V2

Since we don’t have a complete understanding of quantum gravity, there is an important open

) = —= (1) + 1)) (+ Alive, J: Dead)

question:
Can two curved spacetimes be put in a quantum superposition? (And how would that look like?)

Can we use holography to approach this problem?

6/9



Schrodinger’s Black Hole

Schrodinger’s cat is a superposition between two macroscopic states:

L
2

Idea: Consider the state of a rotating black hole, with two parameters: Mass M, Angular

) = —= (1) + 1)) (+ Alive, J: Dead)

momentum J.

W) = [W(M, J))

Now we define Schrédinger’s black hole state:

ot = X208 w4y + e - )
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Schrodinger’s Black Hole

Schrodinger’s cat is a superposition between two macroscopic states:

L
2

Idea: Consider the state of a rotating black hole, with two parameters: Mass M, Angular

) = —= (1) + 1)) (+ Alive, J: Dead)

momentum J.

(WM, J)) = No(J) [0) + N ()T 1)+ Na(J) T2 ]2) + ...

Now we define Schrédinger’s black hole state:

|B(M,J)) = |0) + Na(J)J?|2) + ...

To simplify calculations, we may work perturbatively in J.
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Schrodinger’s Black Hole

Holographic descriptions:

» |U(M,0)): Non-rotating (static) black hole, spherically symmetric.

» |U(M,J)): Rotating (stationary) black hole for J # 0, axisymmetric.
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