

0/34

Quantum black holes at world's end

Andrew Svesko Department of Mathematics King's College London

New Insights in Black Hole Physics from Holography

[hep-th/2501.17231] - Cartwright, Gürsoy, Pedraza, Svesko PRL 133 (2024) 18; [hep-th/2406.17860] - Frassino, Hennigar, Pedraza, Svesko PRD 109 (2024) 12; [hep-th/2310.12220] - Frassino, Pedraza, Svesko, Visser PRL 130 (2023) 16; [hep-th/2212.14055] - Frassino, Pedraza, Svesko, Visser

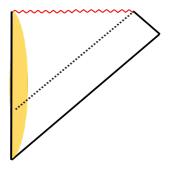
◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ●

Black hole singularity theorem (Penrose, '65)

Generic BHs develop singularities

(Weak) Cosmic Censorship conjecture (Penrose, '68)

Naked singularities cannot form



How can singularities be resolved?

What is the status of WCCC?

Black holes: windows into quantum gravity

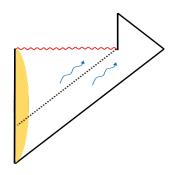
Black hole thermodynamics

(Bekenstein, '72, '73; Hawking, '74, '75)

$$T_{\rm H} = \frac{\kappa \hbar}{2\pi} , \quad S_{\rm BH} = \frac{\rm Area(\mathcal{H})}{4G\hbar}$$

Black holes evaporate

(Hawking, '75, '76)



How to interpret S_{BH} ?

Quantum black hole evolution?

Quantum effects in gravity

المر المرابع المرابعام المرابع المرابعم المرابعم المرابع المم المرابع المرابع المرابع المرابع المرابع المرابع المرابعم المرابعم المرابع المم المرامع المرامع المرامع المم المم المم المرامع المم الم

vi

N. D. BIRRELL Logica Pty Ltd, Australia AND

P. C. W. DAVIES

Professor of Theoretical Physics, University of Newcastle upon Tyne

6	Stress-tensor renormalization	150
6.1	The fundamental problem	151
6.2	Renormalization in the effective action	159
6.3	Conformal anomalies and the massless case	173
6.4	Computing the renormalized stress-tensor	189
6.5	Other regularization methods	206
6.6	Physical significance of the stress-tensor	214
7	Applications of renormalization techniques	225
7.1	Two-dimensional examples	225
7.2	Robertson-Walker models	232
7.3	Perturbation calculation of the stress-tensor	237
7.4	Cosmological considerations	243
8	Quantum black holes	249
8.1	Particle creation by a collapsing spherical body	250
8.2	Physical aspects of black hole emission	264
8.3	Eternal black holes	275
8.4	Analysis of the stress-tensor	283
8.5	Further developments	287

Contents

3/34

Semi-classical gravity: proxy to study quantum effects in gravity

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G \langle T_{\mu\nu}^{\rm mat} \rangle$$

- Classical dynamical spacetime + quantum fields
- Backreaction problem: solve coupled system self-consistently
- Exact 'quantum' black holes?
 - 2D dilaton gravity, e.g., (Russo, Susskind, Thorlacius; '92, '93) (see also Merten's review [2210.10846])
 - Beyond 2D requires perturbative or numerical methods
 - 4D evolution of dynamically spherical BHs (Parentani... '94); (Boyanov...'25)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

4/34

Quantum backreaction by brute force

Ex: 3D Einstein ($\Lambda < 0$) + conformally coupled scalar

• Classical BTZ geometry: (Bañados, Teitelboim Zanelli, '92, '93)

$$ds^{2} = -f(r)dt^{2} + f^{-1}(r)dr^{2} + r^{2}d\phi^{2}, \quad f(r) = \frac{r^{2}}{\ell_{3}^{2}} - 8G_{3}M$$

• Renormalized stress-tensor (Steif, '93); (Lifschytz..., '93); (Casals..., '16,'19)

$$\langle T^a_{\;b}\rangle = \frac{\hbar F(M)}{8\pi r^3} \mathrm{diag}(1,1,-2)$$

• Quantum-corrected geometry

$$\delta g_{tt} = \frac{2 L_{\rm P} F(M)}{r} > 0$$

• Planck-sized correction; many fields $c \gg 1$, $\delta g_{tt} \sim cL_{\rm P} \gg L_{\rm P}$

<ロト < @ ト < E ト < E > E の < で 5/34

Exact quantum (braneworld) black holes

Quantum black holes via braneworld holography:

• Bulk *classical* dynamics encodes *quantum* dynamics of brane

 $\label{eq:classical GR} \ \Leftrightarrow \ \ \mbox{Semi-classical gravity}$

- Study semi-classical backreaction to *all* orders
- Classical BHs localized on end-of-the-world brane ↔ quantum BHs (Emparan, Fabbri, Kaloper, '02; Tanaka, '02)

7/34

- Exact (analytic) quantum black holes in 3D
- New phenomena
 - Reentrant phase transitions (FPSV, '23)
 - Quantum cosmic censorship (Emparan...'20), (FHPS, '24, '25)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

• Quantum induced superradiance (CGPS, '25)

8/34

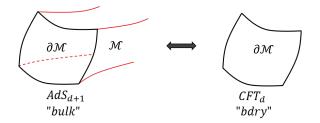
・ロト ・ 日 ・ モ ・ ・ モ ・ ・ のへで

- Holographic braneworlds: review
- Exact 'quantum' black holes
- Applications

Holographic braneworlds

<ロト < 回 ト < E ト < E ト E の Q (? 9/34

A crash course on AdS/CFT holography



• Dynamical gravity in AdS has a *dual, holographic* description in terms of a CFT \Rightarrow AdS/CFT dictionary (GKPW, '98)

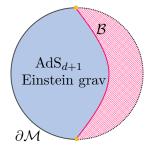
$$Z_{\rm grav}^{\rm on-shell}[\phi_0]|_{\mathcal{M}} = \left\langle e^{-\int_{\partial \mathcal{M}} \phi_0 \mathcal{O}} \right\rangle_{\rm CFT}$$

- Z_{grav} has IR divergences \leftrightarrow UV divergences in CFT correlators
- Holographic renormalization (Balasubramanian, Kraus, '99); (de Haro,...'00)

▲□▶ ▲□▶ ▲≧▶ ▲≧▶ ≧ ∽�� 10/34

Braneworlds meet holography

• Instead of renormalization, place 'brane' at $\rho = \epsilon$ (de Haro, et. al., '00)



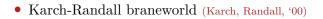
• 'Bulk' governed by GR+ brane

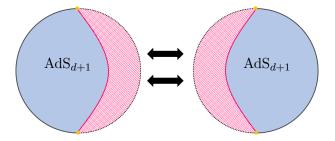
$$I_{\text{bulk}} = I_{\text{GR}} + I_{\text{brane}} , \quad I_{\text{brane}} = -\tau \int_{\mathcal{B}} d^d x \sqrt{-h}$$

• Integrate out bulk from $\partial \mathcal{M}$ to \mathcal{B}

$$I_{\rm eff}^{\mathcal{B}} = I_{\rm grav}[\mathcal{B}] + I_{\rm CFT}^{\rm cut-off}[\mathcal{B}]$$

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへの





- Surgery to complete space; junction conditions fix location of brane
- Induced theory of gravity on brane (Emparan, Johnson, Myers, '99); (Bueno, Emparan, Llorens, '22)

$$I_{\text{grav}}^{\mathcal{B}} = \frac{1}{16\pi G_d} \int_{\mathcal{B}} d^d x \sqrt{-h} \left[R - 2\Lambda_d + \frac{L_{d+1}^2}{(d-4)(d-2)} (R^2 - \text{terms}) + \dots \right]$$

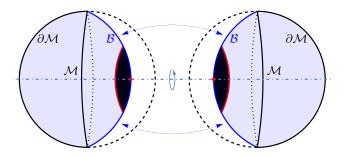
<ロ > < />

Brane-power!

• *Classical* dynamics of AdS bulk encodes *quantum* dynamics of brane (Gubser, '99); (Duff, Liu, '00); (Emparan, Fabbri, Kaloper, '02); (Tanaka, '02)

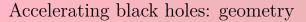
 $\label{eq:classical} \text{Classical GR} \ \Leftrightarrow \ \text{Semi-classical gravity}$

• Classical BHs localized on braneworld \leftrightarrow quantum BHs (EFK '02)



• Study semi-classical backreaction to *all* orders

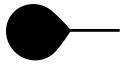
Exact descriptions of quantum black holes



AdS₄ C-metric with Karch-Randall brane (Emparan, Horowitz, Myers, '99)

$$ds^{2} = \frac{\ell^{2}}{(\ell + xr)^{2}} \left[-H(r)dt^{2} + H^{-1}(r)dr^{2} + r^{2} \left(G^{-1}(x)dx^{2} + G(x)d\phi^{2} \right) \right]$$
$$H(r) = \kappa + \frac{r^{2}}{\ell_{3}^{2}} - \frac{\mu\ell}{r} , \quad G(x) = 1 - \kappa x^{2} - \mu x^{3}$$

• Accelerating due to cosmic string, acceleration ℓ^{-1}



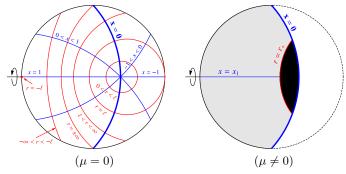
Brane:

- Umbilic surface at x = 0: $K_{ij} = \ell^{-1} h_{ij}$
- Brane at x = 0, where Israel-junction conditions are satisfied

$$\tau = \frac{1}{2\pi G_4 \ell}$$

・ロト ・ 日 ・ モー・ モー・ うへつ

Black holes on the brane: Quantum BTZ



Brane geometry:

$$ds^{2} = -f(r)dt^{2} + f^{-1}(r)dr^{2} + r^{2}d\phi^{2}, \quad f(r) = \frac{r^{2}}{\ell_{3}^{2}} - 8G_{3}M - \frac{\ell F(M)}{r}$$

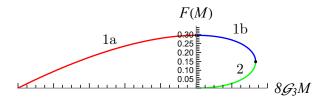
Quantum BTZ black hole: (Emparan, Frassino, Way, '20)

$$\langle T^i_{\ j} \rangle = \frac{\ell}{16\pi G_3} \frac{F(M)}{r^3} {\rm diag}\{1,1,-2\} + \dots$$

Strength of backreaction controlled by $\ell \sim cL_{\rm P}$; not Planck-sized

16/34

Classical BTZ	Quantum BTZ
$R_{ijkl}^2 = \frac{12}{\ell_3^4}$	$R_{ijkl}^2 = \frac{12}{\ell_3^4} + \frac{6F^2\ell^2}{r^6}$
BH or naked conical singularities	Family of black holes



• Branch 1a: $M \leq 0$ quantum-corrected conical defects

- Branch 1b: $M \ge 0$ quantum bh; Casimir dominated
- Branch 2: $M \ge 0$ quantum bh; Casimir subtracted

Mass gap removed; finite mass range

Given appropriate AdS_4 C-metric, known quantum BHs include:

Quantum AdS_3 black holes:

- Rotating qBTZ (Emparan, Frassino, Way, '20)
- Charged qBTZ (Climent, Emparan, Hennigar, '24); (Feng, Ma, Mann,...,'24)

Quantum dS_3 black holes:

- Quantum SdS₃ (Emparan, Pedraza, Svesko, Tomasevic, Visser, '22)
- Quantum Kerr-dS₃ (Panella, Svesko, '23)
- Charged quantum SdS₃ (Climent, Hennigar, Panella, Svesko, '24)

Three-dimensional quantum black holes: a primer

[2407.03410]

Emanuele Panella,^a Juan F. Pedraza^b and Andrew Svesko^c

^aDepartment of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom ^bInstituto de Física Teórica UAM/CSIC. Calle Nicolás Cabrera 13-15, 28049 Madrid, Spain

^cDepartment of Mathematics, King's College London, Strand, London, WC2R 2LS, United Kingdom

▲ロト ▲園ト ▲目ト ▲目ト 三目 → 94.00

Quantum black hole thermodynamics

Induced themrodynamics of qBTZ

Bulk BH thermodynamics \leftrightarrow thermodynamics of qBTZ:

$$S_{\rm BH}^{\rm 4D} = \frac{A_4}{4G_4} = \frac{A_3}{4G_3} + \ell S_{\rm CFT} + \ell^2 S_{\rm Wald} + ... \equiv S_{\rm gen}^{\rm 3D}$$

First law of quantum black holes (Emparan, Frassino, Way, '20)

$$\overline{dM = TdS_{\text{gen}}} + \Omega dJ + \Phi dQ$$

• Consistent with 2D quantum BHs

Thermal stability of quantum BHs

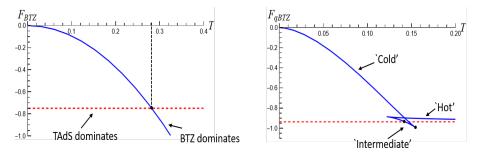
- Static qBTZ (Frassino, Pedraza, Svesko, Visser, '23); (Johnson, Nazario, '23)
- Rotating qBTZ (Frassino, Hennigar, Pedraza, Svesko, '24)

$$C_{V,J,c_3} \equiv T \left(\frac{\partial S_{\text{gen}}}{\partial T} \right)_{V,J,c_3} < 0 , \qquad (a > a_{\text{ext}}, \kappa = +1)$$

• Hess_{Sgen} has positive eigenvalue for 'quantum cones' (with M < 0) thermally unstable (Cartwright, Gürsoy, Pedraza, Svesko, '25)

<□> < @> < \=> < \=> < \=> < \<> < \>< < 20/34

Reentrant phase transitions of quantum black holes



$$F_{qBTZ} = M - TS_{gen}$$

• Large backreaction \Rightarrow 'reentrant' phase transitions (FPSV, '23)

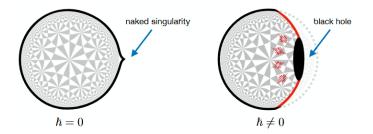
As T increases, TAdS $\xrightarrow{\text{1st}}$ qBTZ $\xrightarrow{\text{0th}}$ TAdS

イロト イヨト イヨト イヨト

• Intermediate BH always thermodynamically stable, $C_{P_3} > 0$

21/34

Quantum cosmic censorship



Backreaction builds horizons (FHPS, '25)

Naked (conical) singularities 'dressed' (Emparan,...'02; Casals...'17; '19)

- Yet, qBHs have curvature singularities
- Quantum singularity theorems (Wall, '10; Fewster, Kontou, '21)

When spacetime has a reliable semi-classical description, singularities are inevitable

イロト イヨト イヨト イ

$$\boxed{G_4 M_{\rm ADM} \geq \sqrt{\frac{A[\sigma]}{16\pi}}}$$

Assume:

- flat initial data
- (weak) cosmic censorship
- BH settles to Kerr

Penrose inequality in AdS $(D \ge 4)$: (Itzkin, Oz, '12); (Folkestad, '22)

$$\frac{16\pi G_D M_{\rm AMD}}{(D-2)\Omega_{D-2}} \ge \left(\frac{A[\sigma]}{\Omega_{D-2}}\right)^{\frac{D-3}{D-2}} + \ell_D^{-2} \left(\frac{A[\sigma]}{\Omega_{D-2}}\right)^{\frac{D-1}{D-2}}$$

Many formulations; no generic proof - see review (Mars, '09)

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ≧ ∽੧<♡ 24/34

Counterexample: (Bousso, Shahbazi-Moghaddam, Tomasevic, '19)

Massless scalar in Boulware state on Schwarzschild BH

Quantum Penrose inequality (Bousso..., '19)

• Replace classical area with generalized entropy, $\Delta S_{\text{gen}} \ge 0$

Evidence and open question:

- QPI evades counterexample; states with *small* backreaction
- What if backreaction is large?
- Naive application for D = 3: violation for *large* backreaction

Quantum Penrose inequality in 3D: (FHPS, `24)

$$8\pi \mathcal{G}_3 M_{\rm AMD} \ge \ell_3^{-2} \left(\frac{4\mathcal{G}_3 S_{\rm gen}}{2\pi}\right)^2$$

• Valid for all AdS₃ quantum BHs, at all orders of backreaction! Classical Penrose inequality in 3D:

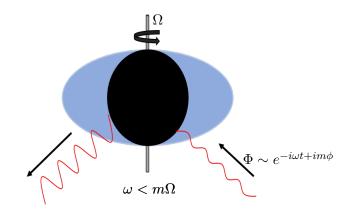
- No known derivation of naive D = 3
- $\ell = 0$ (no backreaction) limit is *not* saturated by classical BTZ
- Saturation linked to mass gap:

Quantum effects allow for formation of black holes with classically unallowed masses

Quantum induced superradiance

・ロト ・ 一部 ト ・ 注 ト 注 ・ う へ や 27/34

Classical black hole superradiance



Low frequency wave amplification (Zeldovich, '66)

Superradiance: Radiation amplification (Dicke, '54)

Allows for energy extraction; analogous to Penrose process

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 三臣 - わんで

Black hole "bombs"

 $\begin{array}{l} (\mbox{Press-Teukolsky}, \mbox{`72}) \\ \mbox{Repeated amplification} \Rightarrow \\ superradiant \ instability \end{array}$

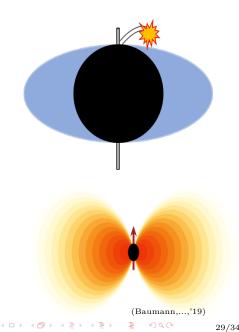
- Massive bosons confined by BH gravitational potential
- Massless bosons in (small) Kerr-AdS (Cardoso... '04, '06)

Superradiance in astrophysics

- Gravitational 'atoms'
- Ultralight bosons?
- SR puts upper bound on BH spin (below Kerr bound)

Fundamental BH physics

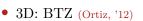
- Final state of Kerr-AdS?
- Cosmic censorship?



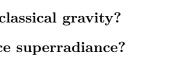
Notable exceptions

• $D \ge 4$ Large Kerr-AdS $(r_+ \gg L)$ (Hawking-Reall, '99; Cardoso...'04)

$$\Omega = \frac{a}{r_+^2 + a^2} \left(1 - \frac{a^2}{L^2} \right) \to 0$$
$$\omega \not\leq m\Omega$$



Superradiance is a *classical* process What happens in semi-classical gravity? Does backreaction induce superradiance?



I NOR

Strategy: Linearly perturb BH with test matter $\Phi \sim e^{-i\omega t + im\phi}$

$$\omega_{\rm QNM} = {\rm Re}(\omega) + i {\rm Im}(\omega)$$

- Dissipative QNMs: $Im(\omega) < 0$ amplitude decays in time
- Onset of instability: $Im(\omega) = 0$ ($Re(\omega) = m\Omega$)
- Superradiant QNMs: $Im(\omega) > 0$ ($Re(\omega) < m\Omega$); exponentially growing mode; linearly unstable

Massless scalar probe:

$$\Box \Phi = 0 , \quad \Phi(r, t, \phi) = \sum_{m \in \mathbb{Z}} \int d\omega e^{-i\omega t + im\phi} \tilde{\Phi}_m(\omega, r)$$

Boundary conditions:

- vanish at boundary: $\Phi \sim \Phi_{\infty} r^{-2}, (r \to \infty)$
- Ingoing at horizon: $\Phi \sim \Xi_+ e^{-ir_*(\omega m\Omega)}, (r \to r_+)$

31/34

Perturbing a quantum black hole

K

Static qBTZ: (Cartwright, Gürsoy, Pedraza, Planas, '24)

$$r[rf\tilde{\Phi}_m'' + \tilde{\Phi}_m'(rf' + f - 2ir\omega)] - \tilde{\Phi}_m(m^2 + i\omega r) = 0$$

Classical BTZ $(\ell = 0)$ (Cardoso,

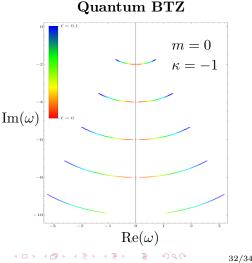
Lemos, (01)

$$\frac{\omega}{\ell_3} = \pm m - 2iM^{1/2}(n+1)$$

Overtones $n \in \mathbb{Z}_+$

Highlights:

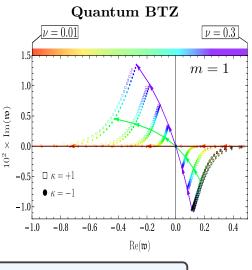
- QNMs: purely dissipative to propagating modes
- Rotating qBTZ (Cartwright, Gürsoy, Pedraza, Svesko, '25); non-monotonic *a*-dependence



Quantum black hole bombs

Classical BTZ (Ortiz,...12)Qu.No superradiant modes $\nu = 0.01$ Classical Kerr-AdS41.5(Cardoso,...'04)1.0Superradiance for small1.0BHs $(r_+/L \ll 1)$ $\hat{\mathbf{E}}$ Highlights: $\hat{\mathbf{E}}$

- Not 'small' $(r_+/\ell_3 \sim .75)$
- $\kappa = \pm 1$ distinction



Classically stable black holes become unstable via quantum backreaction

Summary:

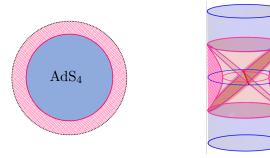
- *Exact* constructions of quantum BHs
- New thermal phase transitions
- Backreaction builds horizons; weak (quantum) CC is viable
- Quantum backreaction can induce superradiance
- Classically stable black holes can become unstable semiclassically

Open problems:

- More exact 3D constructions?
- Cosmic censorship and superradiance beyond AdS₃?
- Quantum black hole (modal) stability?
- Quantum black holes in higher dimensions?

Thank you!

 \mathbf{AdS}_4 C-metric with Randall-Sundrum brane

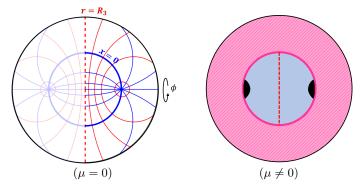


- Bulk acceleration horizon \leftrightarrow cosmological horizon Quantum dS₃ black holes:
 - Quantum SdS₃ (Emparan, Pedraza, Svesko, Tomasevic, Visser, '22)
 - Quantum Kerr-dS₃ (Panella, Svesko, '23)
 - Charged quantum dS_3 (Climent, Hennigar, Panella, Svesko, '24

See review (Panella, Pedraza, Svesko, '24)

◆□ > ◆個 > ◆臣 > ◆臣 > ─臣 = ∽��?

(Quantum) black holes in dS_3



Brane geometry:

$$ds^{2} = -f(r)dt^{2} + f^{-1}(r)dr^{2} + r^{2}d\phi^{2}, \quad f(r) = \frac{-r^{2}}{R_{3}^{2}} - 8\mathcal{G}_{3}M - \frac{\ell F(M)}{r}$$

Quantum dS_3 black hole: (EPSTV, '22)

- Nariai black hole
- Quantum Kerr-dS₃ (PS, '23)

<□> <∄> < \=> < \=> < \=> < \<> < \<> < \<> < \<< 34/34

For the set-up with bulk AdS_4 ,

$$I = \frac{1}{16\pi G_3} \int d^3x \sqrt{h} \left[\frac{2}{L_3^2} + R + \ell^2 \left(\frac{3}{8} R^2 - R_{ij}^2 \right) + \dots \right] + I_{\rm CFT}$$

with scales

$$G_3 = \frac{1}{2L_4}G_4$$
, $\frac{1}{L_3^2} = \frac{2}{L_4^2}\left(1 - \frac{L_4}{\ell}\right) \approx \frac{1}{\ell_3^2}\left(1 + \frac{\ell^2}{4\ell_3^2}\right)$

- As $\ell \to 0$ the brane approaches AdS_4 bdry, where $G_3 \to 0$, implies ℓ controls strength of backreaction
- Higher derivative terms suppressed when curvature scale $L_3 > L_4 \sim \ell \sim c_3 G_3$; ℓ is *cutoff* scale of effective theory

Heuristic arguments

Energy extraction

Assume generalized 2nd law: $dS_{\rm gen} \geq 0$

$$dM = \frac{\omega T}{(\omega - m\Omega)} dS_{\text{gen}} < 0$$
$$\boxed{\omega < m\Omega}$$

Unstable quantum BH?

Faster than light surfaces (Hawking, Reall, '99) Horizon generator $\chi = \partial_t + \frac{a}{r_\perp^2} \partial_{\phi}$ has norm

$$\chi^2_{\rm qBTZ}|_{r\to\infty} = \frac{r^2}{\ell_3^2} (\Omega^2 \ell_3^2 - 1) + \dots$$

- Spacelike for $|\Omega|\ell_3 > 1$; energy escaping $E_{\rm esc} < 0$
- $\chi^2_{\rm cBTZ} < 0$ everywhere $r > r_+$; no FTL surfaces

Perturbing rotating quantum BTZ

Classical BTZ $(\nu = 0)$

(Cardoso,...'01); (Birmingham,...'02) Ingoing at horizon

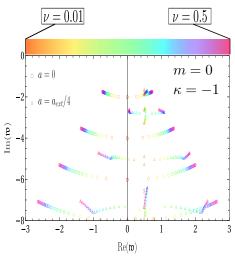
$$\frac{\omega}{\ell_3} = \pm m - 4\pi i T_{R/L} (n + h_{R,L})$$

 $n \in \mathbb{Z}_+$, conformal weights (h_L, h_R) , L/R temperature $T_{L/R}$

Highlights:

- QNMs: purely dissipative to propagating modes
- non-monotonic dependence on a for small ν
- Distinct from quantum-dressed conical singularities

Quantum BTZ



・ロト ・母 ト ・ヨ ト ・ ヨ ・ うんで

34/34

Classical BH stability

- Superradiance = dynamical instability
- Thermal stability? Small Kerr-AdS BHs thermally *unstable*
- Classical (stationary) BHs *dynamically* stable (Hollands-Wald, '13; Green,...'16)

$$\mathcal{E} = \delta^2 M - \Omega \delta^2 J - \frac{\kappa}{8\pi G} \delta^2 A \ge 0$$

Stationary BHs that locally extremize the entropy for fixed conserved charges are linearly stable under perturbations that preserve said conserved charges

Quantum BH stability

- Quantum-corrected BTZ ($\kappa = -1$) thermally stable
- Quantum cones ($\kappa = +1, M < 0$) thermally unstable
- No semi-classical counterexample to HW

$$\mathcal{E} = \delta^2 M - \Omega \delta^2 J - T \delta^2 S_{\text{gen}} \ge 0$$