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Black holes: windows into quantum gravity

Black hole singularity theorem
(Penrose, ‘65)

Generic BHs develop singularities

(Weak) Cosmic Censorship
conjecture (Penrose, ‘68)

Naked singularities cannot form

How can singularities be resolved?

What is the status of WCCC?
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Black holes: windows into quantum gravity

Black hole thermodynamics
(Bekenstein, ‘72, ’73; Hawking, ’74, ’75)

TH = κℏ
2π

, SBH = Area(H)
4Gℏ

Black holes evaporate
(Hawking, ‘75, ’76)

How to interpret SBH?

Quantum black hole evolution?
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Quantum effects in gravity
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Semi-classical gravity and ‘quantum’ black holes

Semi-classical gravity: proxy to study quantum effects in gravity

Gµν + Λgµν = 8πG⟨T mat
µν ⟩

• Classical dynamical spacetime + quantum fields
• Backreaction problem: solve coupled system self-consistently
• Exact ‘quantum’ black holes?

• 2D dilaton gravity, e.g., (Russo, Susskind, Thorlacius; ’92, ’93)
(see also Merten’s review [2210.10846])

• Beyond 2D requires perturbative or numerical methods
• 4D evolution of dynamically spherical BHs (Parentani... ’94);

(Boyanov...’25)
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Quantum backreaction by brute force

Ex: 3D Einstein (Λ < 0) + conformally coupled scalar
• Classical BTZ geometry: (Bañados, Teitelboim Zanelli, ’92, ’93)

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dϕ2, f(r) = r2

ℓ2
3

− 8G3M

• Renormalized stress-tensor (Steif, ‘93); (Lifschytz..., ’93); (Casals..., ’16,’19)

⟨T a
b⟩ = ℏF (M)

8πr3 diag(1, 1, −2)

• Quantum-corrected geometry

δgtt = 2LPF (M)
r

> 0

• Planck-sized correction; many fields c ≫ 1, δgtt ∼ cLP ≫ LP
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Exact quantum (braneworld) black holes

Quantum black holes via braneworld holography:
• Bulk classical dynamics encodes quantum dynamics of brane

Classical GR ⇔ Semi-classical gravity

• Study semi-classical backreaction to all orders
• Classical BHs localized on end-of-the-world brane ↔ quantum BHs

(Emparan, Fabbri, Kaloper, ‘02; Tanaka, ’02)
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New insights from holography

• Exact (analytic) quantum black holes in 3D
• New phenomena

• Reentrant phase transitions (FPSV, ’23)

• Quantum cosmic censorship (Emparan...’20), (FHPS, ’24, ’25)

• Quantum induced superradiance (CGPS, ’25)
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Roadmap

• Holographic braneworlds: review
• Exact ‘quantum’ black holes
• Applications
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Holographic braneworlds
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A crash course on AdS/CFT holography

• Dynamical gravity in AdS has a dual, holographic description in
terms of a CFT ⇒ AdS/CFT dictionary (GKPW, ’98)

Zon-shell
grav [ϕ0]|M =

〈
e−

�
∂M ϕ0O

〉
CFT

• Zgrav has IR divergences ↔ UV divergences in CFT correlators
• Holographic renormalization (Balasubramanian, Kraus, ‘99); (de Haro,...‘00)
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Braneworlds meet holography
• Instead of renormalization, place ‘brane’ at ρ = ϵ (de Haro, et. al., ‘00)

B

AdSd+1
Einstein grav

∂M

• ‘Bulk’ governed by GR+ brane

Ibulk = IGR + Ibrane , Ibrane = −τ

�
B

ddx
√

−h

• Integrate out bulk from ∂M to B

IB
eff = Igrav[B] + Icut-off

CFT [B]
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Holographically induced gravity

• Karch-Randall braneworld (Karch, Randall, ‘00)

AdSd+1 AdSd+1

• Surgery to complete space; junction conditions fix location of brane
• Induced theory of gravity on brane (Emparan, Johnson, Myers, ‘99);

(Bueno, Emparan, Llorens, ‘22)

IB
grav = 1

16πGd

�
B
ddx

√
−h

[
R − 2Λd +

L2
d+1

(d − 4)(d − 2)(R2 − terms) + ...

]
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Quantum black holes on a brane
Brane-power!

• Classical dynamics of AdS bulk encodes quantum dynamics of
brane (Gubser, ‘99); (Duff, Liu, ‘00); (Emparan, Fabbri, Kaloper, ‘02); (Tanaka,‘02)

Classical GR ⇔ Semi-classical gravity

• Classical BHs localized on braneworld ↔ quantum BHs (EFK ‘02)

∂M

M

BB

M

∂M

• Study semi-classical backreaction to all orders
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Exact descriptions of quantum black holes
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Accelerating black holes: geometry
AdS4 C-metric with Karch-Randall brane (Emparan, Horowitz, Myers, ‘99)

ds2 = ℓ2

(ℓ + xr)2

[
−H(r)dt2 + H−1(r)dr2 + r2

(
G−1(x)dx2 + G(x)dϕ2

)]
H(r) = κ + r2

ℓ2
3

− µℓ

r
, G(x) = 1 − κx2 − µx3

• Accelerating due to cosmic string, acceleration ℓ−1

Brane:
• Umbilic surface at x = 0: Kij = ℓ−1hij

• Brane at x = 0, where Israel-junction conditions are satisfied

τ = 1
2πG4ℓ
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Black holes on the brane: Quantum BTZ

Figure 1: Bulk geometry in a slice at constant t and φ. Left: C-metric coordinates (x, r) in the spatial

Poincaré disk of empty global AdS4 (µ = 0, κ = +1). Lines of constant x ∈ [−1, 1] are blue arcs; lines of

constant r ∈ [−∞,−`] ∪ [0,∞] are red arcs (full circles for 0 < r ≤ `). The asymptotic boundary (black

circle) is at xr = −`. The φ axis of rotation is x = ±1. Right: Sketch of braneworld construction with

a black hole in it. The bulk is cut off at a brane at x = 0 and only the (gray) region 0 ≤ x ≤ x1 is

retained; the root x = x1 of G(x) is now the φ axis. A second copy of this region, not shown, is glued at

the brane to make a Z2-symmetric two-sided braneworld. A bulk black hole with event horizon at r = r+

is attached to the brane. Dual three-dimensional fields satisfy transparent boundary conditions at the

junction between the dynamical brane (thick blue) and the non-dynamical AdS4 boundary (black).

and discard the region σ > σb, the construction gives the ground state of the Karch-Randall set

up.

When µ 6= 0 the geometry is more complicated, but the C-metrics have the nice feature

that the surface x = 0 is always totally umbilic. That is, that the extrinsic curvature Kab and

induced metric hab satisfy

Kab = −1

`
hab . (2.10)

The x = 0 surface is therefore where we put the brane (figure 1). We cut the bulk geometry

at x = 0 and keep a range of positive x to be specified later. It is easiest to understand the

properties of this brane when µ = 0, since then it corresponds to the surface σ = σb in (2.9)

with

coshσb =
`3
`4

=

√
1 +

`23
`2
. (2.11)

The brane geometry is AdS3 with curvature radius `3. We take the brane to be two-sided, with

Z2 orbifold boundary conditions on it (our main results extend to one-sided branes changing

only factors of 2). As a result, the metric is continuous across the brane, but its derivative is

6Imaginary ` would be appropriate for deSitter branes.

7

(µ = 0) (µ ̸= 0)

Brane geometry:

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dϕ2 , f(r) = r2

ℓ2
3

− 8G3M − ℓF (M)
r

Quantum BTZ black hole: (Emparan, Frassino, Way, ‘20)

⟨T i
j⟩ = ℓ

16πG3

F (M)
r3 diag{1, 1, −2} + ...

Strength of backreaction controlled by ℓ ∼ cLP; not Planck-sized
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Classical vs quantum BTZ

Classical BTZ Quantum BTZ
R2

ijkl = 12
ℓ4

3
R2

ijkl = 12
ℓ4

3
+ 6F 2ℓ2

r6

BH or naked conical singularities Family of black holes

83M
0.05
0.10
0.15
0.20
0.25
0.30

F(M )

1a

2

1b

• Branch 1a: M ≤ 0 quantum-corrected conical defects
• Branch 1b: M ≥ 0 quantum bh; Casimir dominated
• Branch 2: M ≥ 0 quantum bh; Casimir subtracted

Mass gap removed; finite mass range
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Quantum black hole zoology
Given appropriate AdS4 C-metric, known quantum BHs include:

Quantum AdS3 black holes:
• Rotating qBTZ (Emparan, Frassino, Way, ‘20)
• Charged qBTZ (Climent, Emparan, Hennigar,‘24); (Feng, Ma, Mann,...,’24)

Quantum dS3 black holes:
• Quantum SdS3 (Emparan, Pedraza, Svesko, Tomasevic, Visser, ‘22)
• Quantum Kerr-dS3 (Panella, Svesko, ’23)
• Charged quantum SdS3 (Climent, Hennigar, Panella, Svesko, ’24)

[2407.03410]
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Quantum black hole thermodynamics
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Induced themrodynamics of qBTZ
Bulk BH thermodynamics ↔ thermodynamics of qBTZ:

S4D
BH = A4

4G4
= A3

4G3
+ ℓSCFT + ℓ2SWald + ... ≡ S3D

gen

First law of quantum black holes (Emparan, Frassino, Way, ‘20)

dM = TdSgen + ΩdJ + ΦdQ

• Consistent with 2D quantum BHs
Thermal stability of quantum BHs

• Static qBTZ (Frassino, Pedraza, Svesko, Visser, ‘23); (Johnson, Nazario, ’23)

• Rotating qBTZ (Frassino, Hennigar, Pedraza, Svesko, ‘24)

CV,J,c3 ≡ T

(
∂Sgen
∂T

)
V,J,c3

< 0 , (a > aext, κ = +1)

• HessSgen has positive eigenvalue for ‘quantum cones’ (with M < 0)
thermally unstable (Cartwright, Gürsoy, Pedraza, Svesko, ‘25)
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Reentrant phase transitions of quantum black holes

FqBTZ = M − TSgen

• Large backreaction ⇒ ‘reentrant’ phase transitions (FPSV, ‘23)

As T increases, TAdS 1st→ qBTZ 0th→ TAdS

• Intermediate BH always thermodynamically stable, CP3 > 0
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Quantum cosmic censorship
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The need for (weak) quantum cosmic censorship

Backreaction builds horizons (FHPS, ‘25)

Naked (conical) singularities ‘dressed’ (Emparan,...‘02; Casals...’17; ’19)

• Yet, qBHs have curvature singularities
• Quantum singularity theorems (Wall, ’10; Fewster, Kontou, ’21)

When spacetime has a reliable semi-classical
description, singularities are inevitable
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Classical Penrose inequality

G4MADM ≥

√
A[σ]
16π

Assume:
• flat initial data
• (weak) cosmic censorship
• BH settles to Kerr

Penrose inequality in AdS (D ≥ 4): (Itzkin, Oz, ’12); (Folkestad, ’22)

16πGDMAMD
(D − 2)ΩD−2

≥
(

A[σ]
ΩD−2

)D−3
D−2

+ ℓ−2
D

(
A[σ]
ΩD−2

)D−1
D−2

Many formulations; no generic proof – see review (Mars, ’09)
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Quantum violation and a proposal

Counterexample: (Bousso, Shahbazi-Moghaddam, Tomasevic, ‘19)

Massless scalar in Boulware state on Schwarzschild BH

Quantum Penrose inequality (Bousso..., ‘19)

• Replace classical area with generalized entropy, ∆Sgen ≥ 0

16πGDMAMD
(D − 2)ΩD−2

≥
(4GDSgen

ΩD−2

)D−3
D−2

+ ℓ−2
D

(4GDSgen
ΩD−2

)D−1
D−2

Evidence and open question:
• QPI evades counterexample; states with small backreaction
• What if backreaction is large?
• Naive application for D = 3: violation for large backreaction
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A new proposal

Quantum Penrose inequality in 3D: (FHPS, ‘24)

8πG3MAMD ≥ ℓ−2
3

(4G3Sgen
2π

)2

• Valid for all AdS3 quantum BHs, at all orders of backreaction!
Classical Penrose inequality in 3D:

• No known derivation of naive D = 3
• ℓ = 0 (no backreaction) limit is not saturated by classical BTZ
• Saturation linked to mass gap:

Quantum effects allow for formation of black
holes with classically unallowed masses
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Quantum induced superradiance
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Classical black hole superradiance

Ω

ω < mΩω < mΩ

Φ ∼ e−iωt+imϕ

Low frequency wave amplification (Zeldovich, ‘66)

Superradiance: Radiation amplification (Dicke, ‘54)

Allows for energy extraction; analogous to Penrose process
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Bombs and boson clouds
Black hole “bombs”
(Press-Teukolsky, ‘72)
Repeated amplification ⇒
superradiant instability

• Massive bosons confined by
BH gravitational potential

• Massless bosons in (small)
Kerr-AdS (Cardoso... ‘04, ’06)

Superradiance in astrophysics
• Gravitational ‘atoms’
• Ultralight bosons?
• SR puts upper bound on BH

spin (below Kerr bound)
Fundamental BH physics

• Final state of Kerr-AdS?
• Cosmic censorship?

(Baumann,...,’19)
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Superradiance is not universal
Notable exceptions

• D ≥ 4 Large Kerr-AdS
(r+ ≫ L) (Hawking-Reall, ’99;
Cardoso...’04)

Ω = a

r2
+ + a2

(
1 − a2

L2

)
→ 0

ω ≮ mΩ
• 3D: BTZ (Ortiz, ’12)

Superradiance is a classical process

What happens in semi-classical gravity?

Does backreaction induce superradiance?
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Perturbing a black hole
Strategy: Linearly perturb BH with test matter Φ ∼ e−iωt+imϕ

ωQNM = Re(ω) + iIm(ω)

• Dissipative QNMs: Im(ω) < 0 – amplitude decays in time
• Onset of instability: Im(ω) = 0 (Re(ω) = mΩ)
• Superradiant QNMs: Im(ω) > 0 (Re(ω) < mΩ); exponentially

growing mode; linearly unstable

Massless scalar probe:

□Φ = 0 , Φ(r, t, ϕ) =
∑
m∈Z

�
dωe−iωt+imϕΦ̃m(ω, r)

Boundary conditions:
• vanish at boundary: Φ ∼ Φ∞r−2, (r → ∞)
• Ingoing at horizon: Φ ∼ Ξ+e−ir∗(ω−mΩ), (r → r+)
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Perturbing a quantum black hole
Static qBTZ: (Cartwright, Gürsoy, Pedraza, Planas, ‘24)

r[rfΦ̃′′
m + Φ̃′

m(rf ′ + f − 2irω)] − Φ̃m(m2 + iωr) = 0

Classical BTZ (ℓ = 0) (Cardoso,
Lemos, ‘01)

ω

ℓ3
= ±m − 2iM1/2(n + 1)

Overtones n ∈ Z+

Highlights:
• QNMs: purely dissipative to

propagating modes
• Rotating qBTZ (Cartwright,

Gürsoy, Pedraza, Svesko, ‘25);
non-monotonic a-dependence

Quantum BTZ

Re(ω)

Im(ω)

m = 0
κ = −1
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Quantum black hole bombs
Classical BTZ (Ortiz,...‘12)
No superradiant modes
Classical Kerr-AdS4
(Cardoso,...‘04)
Superradiance for small
BHs (r+/L ≪ 1)
Highlights:

• Not ‘small’
(r+/ℓ3 ∼ .75)

• κ = ±1 distinction

Quantum BTZ

m = 1

Classically stable black holes become
unstable via quantum backreaction
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End-of-the-talk

Summary:
• Exact constructions of quantum BHs
• New thermal phase transitions
• Backreaction builds horizons; weak (quantum) CC is viable
• Quantum backreaction can induce superradiance
• Classically stable black holes can become unstable semiclassically

Open problems:
• More exact 3D constructions?
• Cosmic censorship and superradiance beyond AdS3?
• Quantum black hole (modal) stability?
• Quantum black holes in higher dimensions?

Thank you!
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(Quantum) dS3 black holes
AdS4 C-metric with Randall-Sundrum brane

AdS4

• Bulk acceleration horizon ↔ cosmological horizon
Quantum dS3 black holes:

• Quantum SdS3 (Emparan, Pedraza, Svesko, Tomasevic, Visser, ‘22)
• Quantum Kerr-dS3 (Panella, Svesko, ’23)
• Charged quantum dS3 (Climent, Hennigar, Panella, Svesko, ’24

See review (Panella, Pedraza, Svesko, ‘24)
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(Quantum) black holes in dS3

(µ = 0) (µ ̸= 0)

Brane geometry:

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dϕ2 , f(r) = −r2

R2
3

− 8G3M − ℓF (M)
r

Quantum dS3 black hole: (EPSTV, ‘22)

• Nariai black hole
• Quantum Kerr-dS3 (PS, ‘23)
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Induced theory on the 3D brane

For the set-up with bulk AdS4,

I = 1
16πG3

�
d3x

√
h

[ 2
L2

3
+ R + ℓ2

(3
8R2 − R2

ij

)
+ ...

]
+ ICFT

with scales

G3 = 1
2L4

G4 ,
1

L2
3

= 2
L2

4

(
1 − L4

ℓ

)
≈ 1

ℓ2
3

(
1 + ℓ2

4ℓ2
3

)

• As ℓ → 0 the brane approaches AdS4 bdry, where G3 → 0, implies
ℓ controls strength of backreaction

• Higher derivative terms suppressed when curvature scale
L3 > L4 ∼ ℓ ∼ c3G3; ℓ is cutoff scale of effective theory
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Heuristic arguments
Energy extraction
Assume generalized 2nd law:
dSgen ≥ 0

dM = ωT

(ω − mΩ)dSgen < 0

ω < mΩ

Unstable quantum BH?

Faster than light surfaces (Hawking, Reall, ‘99)
Horizon generator χ = ∂t + a

r2
+

∂ϕ has norm

χ2
qBTZ|r→∞ = r2

ℓ2
3

(Ω2ℓ2
3 − 1) + ...

• Spacelike for |Ω|ℓ3 > 1; energy escaping Eesc < 0
• χ2

cBTZ < 0 everywhere r > r+; no FTL surfaces
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Perturbing rotating quantum BTZ

Classical BTZ (ν = 0)
(Cardoso,...‘01); (Birmingham,...’02)
Ingoing at horizon

ω

ℓ3
= ±m − 4πiTR/L(n + hR,L)

n ∈ Z+, conformal weights
(hL, hR), L/R temperature TL/R

Highlights:
• QNMs: purely dissipative to

propagating modes
• non-monotonic dependence on

a for small ν

• Distinct from quantum-dressed
conical singularities

Quantum BTZ

m = 0
κ = −1
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Quantum black hole stability
Classical BH stability

• Superradiance = dynamical instability
• Thermal stability? Small Kerr-AdS BHs thermally unstable
• Classical (stationary) BHs dynamically stable (Hollands-Wald, ’13;

Green,...’16)

E = δ2M − Ωδ2J − κ

8πG
δ2A ≥ 0

Stationary BHs that locally extremize the entropy for fixed conserved
charges are linearly stable under perturbations that preserve said
conserved charges
Quantum BH stability

• Quantum-corrected BTZ (κ = −1) thermally stable
• Quantum cones (κ = +1, M < 0) thermally unstable
• No semi-classical counterexample to HW

E = δ2M − Ωδ2J − Tδ2Sgen ≥ 0
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