

TESTING G-2 WITH NEUTRINO COOLING IN WHITE DWARFS

Based on [arXiv: 2405.00094] in collaboration with Jaime Hoefken Zink

Patrick Foldenauer

patrick.foldenauer@csic.es IFT (UAM-CSIC) Madrid

Física

WHERE TO LOOK FOR BSM

• Many UV theories predict heavy new states with sizeable couplings (e.g. SUSY, GUTs, String Models, ...)

WHERE TO LOOK FOR BSM

 Many UV theories predict heavy new states with sizeable couplings (e.g. SUSY, GUTs, String Models, ...)

WHERE TO LOOK FOR BSM

 Many UV theories predict heavy new states with sizeable couplings (e.g. SUSY, GUTs, String Models, ...)

DARK PHOTONS $\mathcal{L} \supset -\frac{\epsilon_A}{2} F_{\mu\nu} X^{\mu\nu}$

[Okun '82; Holdom '86]

• For light mediators $M_X \ll M_Z$ kinetic terms can be diagonalised by simple field redefinition:

$$A^{\mu} \to A^{\mu} - \epsilon_A X^{\mu} \longrightarrow e A_{\mu} J^{\mu}_{\rm EM} - \epsilon_A e X_{\mu} J^{\mu}_{\rm EM} \longrightarrow$$

Coupling to EM current suppressed by ϵ_A , where typically $\epsilon_A \propto g_x/16\pi^2$

DARK PHOTONS

$$\mathcal{L} \supset -\frac{\epsilon_A}{2} F_{\mu\nu} X^{\mu\nu}$$

[Okun '82; Holdom '86]

• For light mediators $M_X \ll M_Z$ kinetic terms can be diagonalised by simple field redefinition:

• If $U(1)_X$ is broken by VEV f of scalar, mass is related to coupling:

$$\mathcal{L} = (D_{\mu}S)^{\dagger} D^{\mu}S \supset g_x^2 f^2 X_{\mu}X^{\mu}$$

$$\Rightarrow M_X = g_x f$$

BEYOND THE MINIMAL

• SM fields can be charged under new $U(1)_X$

$$\mathcal{L}_{\text{int}} = -g_x J_X^{\mu} X_{\mu} \qquad J_X^{\mu} = \sum_{\psi} \bar{\psi} Q_{\psi} \gamma^{\mu} \psi \qquad \psi = Q, L, u, d, \ell, \nu$$

BEYOND THE MINIMAL

SM fields can be charged under new $U(1)_X$

$$\mathcal{C}_{\text{int}} = -g_x J_X^{\mu} X_{\mu} \qquad J_X^{\mu} = \sum_{\psi} \bar{\psi} Q_{\psi} \gamma^{\mu} \psi \qquad \psi = Q, L, u, d, \ell, \nu$$

- SM Lagrangian has accidental global symmetries $U(1)_B, U(1)_{L_e}, U(1)_{L_u}, U(1)_{L_\tau}.$
- Four independent anomaly-free combinations:

leptons

$$L_{\mu} - L_e$$

$$L_e - L_\tau$$

charging 1st & 3rd generation leptons

leptons

 $L_{\mu} - L_{\tau}$

BEYOND THE MINIMAL

• SM fields can be charged under new $U(1)_X$

$$\mathcal{L}_{\text{int}} = -g_x J_X^{\mu} X_{\mu} \qquad J_X^{\mu} = \sum_{\psi} \bar{\psi} Q_{\psi} \gamma^{\mu} \psi \qquad \psi = Q, L, u, d, \ell, \nu$$

- SM Lagrangian has accidental global symmetries $U(1)_B, U(1)_{L_e}, U(1)_{L_{\mu}}, U(1)_{L_{\tau}}$.
- Four independent anomaly-free combinations:

What can these do for us?

ANOMALOUS MAGNETIC MOMENT

• Muon-philic vectors contribute to $(g-2)_{\mu}$ at one-loop level

$$\Delta a_{\mu} = \frac{g_{\mu}^2}{4\pi^2} \int_0^1 \mathrm{d}u \; \frac{u^2(1-u)}{u^2 + \frac{(1-u)}{x_{\mu}^2}}$$

where
$$x_{\mu}=m_{\mu}/M_{A'}$$

Can we test the remaining $(g-2)_{\mu}$ solution?

WHITE DWARF COOLING

NEXT-TO-TOPIC

Stellar evolution

© 2012 Encyclopædia Britannica, Inc.

WHITE DWARFS

- WDs formed after "low-mass" star has exhausted fuel
- Hot dense core of C and O
- Core supported by electron degeneracy pressure
 Mass of the sun, radius of the earth!
 → Very dense: ~ 10⁶ kg/m³ (solar core ~ 10⁵ kg/m³)

• Star cools down over billions of years via photons and neutrinos:

$$\frac{dT_{WD}}{dt} = -\frac{L_{\gamma}}{4\pi R_{WD}\sigma_{SB}T_{WD}} - \frac{L_{\nu}}{4\pi R_{WD}\sigma_{SB}T_{WD}}$$

WHITE DWARFS

- WDs formed after "low-mass" star has exhausted fuel
- Hot dense core of C and O
- Core supported by electron degeneracy pressure
 Mass of the sun, radius of the earth!
 → Very dense: ~ 10⁶ kg/m³ (solar core ~ 10⁵ kg/m³)

• Star cools down over billions of years via photons and neutrinos:

dT_{WD} _	L_{γ} \leftarrow COL	$L_{\nu} \leftarrow HOT$
dt – –	$\frac{1}{4\pi R_{WD}\sigma_{SB}T_{WD}}$	$\overline{4\pi R_{WD}\sigma_{SB}T_{WD}}$

EQUATION OF STATE

1.2

1.0

0.2

0.0

1000

2000

 $n [10^{37} \text{ m}^{-3}]$

- EoS of White Dwarfs well-known!
- Salpeter EoS: degenerate ideal gas + corrections (non-uniformity, Coulomb potential, ...)

[Salpeter; Astrophys. J. 134, 669 (1961)]

 Tolman-Oppenheimer-Volkoff (TOV) equations: solving the Einstein field equations in Schwarzschild metric with fluid

$$\frac{p(r)}{dr} = -G \frac{\epsilon(r) + p(r)}{r(r - 2Gm(r))} [m(r) + 4\pi p(r) r^3]$$

TOV solution for 1 M_{\odot} WD, e^{\pm} number density

3000

R [km]

5000

Extract

density profiles

4000

6000

 $\frac{dm(r)}{dr} = 4\pi\epsilon(r) r^2$

10

d

COOLING: PLASMON DECAY

• Early WD cooling via ``on-shell" photon decay in plasma into neutrinos

- Since in WDs the typical $q^2 \ll M_W^2, M_Z^2$ we can compute this as

11

$$\mathcal{M} = \frac{G_F}{\sqrt{2}} \left(\Gamma_{\lambda}^{\mu\nu} \varepsilon_{\mu}(\boldsymbol{q}, \lambda) \right) \, \bar{u}(p_1) \gamma_{\nu} (1 - \gamma_5) u(p_2)$$

with **effective vertex** $\Gamma_{\lambda}^{\mu\nu}$ for each photon polarization with couplings C_V^{SM} , C_A^{SM} [Braaten & Segel; *Phys.Rev.D* 48 (1993) 1478]

WD NEUTRINO LUMINOSITY

• Plasmon decay width in terms of effective vertex $\Gamma^{\mu\nu}_{\lambda}$ and plasmon frequencies $\omega_{\lambda}(q)$.

• Neutrino emissivity & total luminosity:

12

$$\mathcal{Q}_{\lambda} \equiv \int d^{3}\vec{q} \ \Gamma_{\lambda}(q) \ \omega_{\lambda}(q) \ n_{B}\left(\omega_{\lambda}(q), T\right) \qquad L_{\nu} = 4\pi \int_{0}^{R_{\rm WD}} \sum_{\lambda} \mathcal{Q}_{\lambda}(r) r^{2} dr$$

PLASMON DECAY - DARK PHOTONS

• Leptophilic dark photons contribute

$$\sum_{e^+}^{v} A'$$

 Since dark photon couples to plasma electrons have to compute full thermal propagtor (Dyson sum)

DARK PHOTON SELF ENERGY

Evaluate A' self-energy in thermal background — a beast!

• But, this is essentially the plasmon self-energy: $\epsilon_A^2 \times \Pi_{\gamma}^{\mu\nu}$!

Identify
$$F_{A'} = \frac{q^2}{q^2} \Pi_{A'}^{00} = \epsilon_A^2 \frac{q^2}{q^2} \Pi_L^{\gamma}$$
 $G_{A'} = \Pi_{A'}^{xx} = \epsilon_A^2 \Pi_T^{\gamma}$ with known results!

PLASMON DECAY - DARK PHOTONS

• Mimic SM-like computation

but shifting the SM couplings by the A' coupling and full propagator:

$$C_{V,L}(q) \to C_{V}^{SM} + \frac{\sqrt{2}}{2 G_{F}} \frac{e \epsilon_{A} g_{x} Q_{\nu_{\alpha}}}{q^{2} - m_{A'}^{2} - F_{A'}} \longleftarrow \Pi_{L}^{\gamma}$$

$$C_{V,T}(q) \to C_{V}^{SM} + \frac{\sqrt{2}}{2 G_{F}} \frac{e \epsilon_{A} g_{x} Q_{\nu_{\alpha}}}{q^{2} - m_{A'}^{2} - G_{A'}} \longrightarrow \Pi_{T}^{\gamma}$$

$$C_{A}(q) \to C_{A}^{SM} - \frac{\sqrt{2}}{16 G_{F}} \frac{\tan^{2} \theta_{W} \ e \epsilon_{A} g_{x} Q_{\nu_{\alpha}}}{q^{2} - m_{A'}^{2} - G_{A'}} \longrightarrow \Pi_{T}^{\gamma}$$

THREE REGIMES

- dark photon goes on resonance w/ plasma frequency $\omega_P(r)!$
- regulate pole via Breit-Wigner propagator:

THREE REGIMES

- **Resonant regime** $(m_{A'} \sim T, \omega_P)$:
 - dark photon goes on resonance w/ plasma frequency $\omega_P(r)!$
 - regulate pole via **Breit-Wigner propagator:**

$$G_{\rm BW}^{\mu\nu}(q^2) = \frac{-i(g^{\mu\lambda} - q^{\mu}q^{\lambda}/m^2)}{q^2 - m^2 - \operatorname{Re}(F) - i\operatorname{Im}(F)} P_{L\lambda}^{\nu} + \frac{-i(g^{\mu\lambda} - q^{\mu}q^{\lambda}/m^2)}{q^2 - m^2 - \operatorname{Re}(G) - i\operatorname{Im}(G)} P_{T\lambda}^{\nu}$$

BREIT WIGNER REGULATOR

Compute the imaginary part of dark photon self-energy
 In resonant region only due to neutrinos

• We find the typical relation

Neutrinos are non-thermal!

$$\bar{\Pi}_{A'}^{\mu\nu}(q^2) = -\frac{\left(k_{\nu}^{\alpha}\right)^2}{4\pi^2} q^2 g^{\mu\nu} \int_0^1 dx \, x \left(1-x\right) \, \log\left(\frac{m_{\alpha}^2}{m_{\alpha}^2 - x(1-x)q^2}\right)$$

• So the regulators

$$\operatorname{Im}(\bar{\Pi}_{A'}^{\mu\nu})(q^2) = \underbrace{\frac{(k_{\nu}^{\alpha})^2}{24\pi} \frac{(\omega_l^2 - q^2)^2}{q^2}}_{\operatorname{Im}(F)} P_L^{\mu\nu} - \underbrace{\frac{(k_{\nu}^{\alpha})^2}{24\pi} (\omega_t^2 - q^2)}_{\operatorname{Im}(G)} P_T^{\mu\nu}$$

Fraction of extra cooling $\varepsilon^{BSM} = L_{\nu}^{BSM}/L_{\nu}^{SM} - 1$ Finally some plots! WD COOLING SENSITIVITIES

WD COOLING & $(g-2)_{\mu}$

Current bounds exclude 30% extra cooling leading limit on g-2

CONCLUSIONS

- Neutrino cooling of White Dwarfs is sensitive laboratory for (light) leptophilic mediators
- First full computation of A' induced plasmon decay in resonant domain.
- Already at current sensitivities WD cooling excludes unconstraint parameter space of $U(1)_{L_{\mu}-L_{\tau}}$
- Measurements of hot WD neutrino luminosity function is testing $(g-2)_{\mu}$ explanation within $U(1)_{L_{\mu}-L_{\tau}}!$
- For all the fun details ask me and check out our paper :)

[arXiv:2405.00094]

THANK YOU!

BACKUP

PLASMON PROPAGATOR

- Photon in plasma is on-shell with plasmon frequencies $\omega_\lambda(q)$
- Can extract field strength normalisations $Z_l(q)$ & $Z_t(q)$

Longitudinal: $D^{00} = \frac{1}{a^2 - \prod_i (Q)}$ $\lim_{q_0 \to \omega_l(q)} D^{00} = \frac{\omega_l^2(q)}{a^2} \frac{Z_l(q)}{a_0^2 - \omega_l(q)^2}$ **Transverse**: $D^{xx} = \frac{1}{q_0^2 - q^2 - \Pi_T(Q)}$ $\lim_{q_0\to\omega_t(q)}D^{xx}=\frac{Z_t(q)}{a_0^2-\omega_t(q)^2}$ Solution $Z_{I}(q) = \frac{q^{2}}{\omega_{I}(q)^{2}} \left| -\frac{\partial \Pi_{L}}{\partial q_{0}^{2}} (\omega_{I}(q), q) \right|^{-1}$ $Z_t(q) = \left[1 - \frac{\partial \Pi_T}{\partial q_2^2} \left(\omega_t(q), q\right)\right]^{-1}$

[J. Hoefken Zink]

PLASMON PROPAGATOR

The residue of a pole in q_0^2 of $D^{\mu\nu}(q_0, q)$ can be identified with $\varepsilon^{\mu}(q)\varepsilon^{\nu}(q)^*$. So we have:

$$\operatorname{Res} D^{00} = \operatorname{Res} \left(\frac{\omega_l(q)^2}{q^2} \frac{Z_l(q)}{q_0^2 - \omega_l(q)^2} \right) = \frac{\omega_l(q)^2}{q^2} Z_l(q)$$
$$\operatorname{Res} D^{xx} = \operatorname{Res} \left(\frac{Z_t(q)}{q_0^2 - \omega_t(q)^2} \right) = Z_t(q)$$

From these expressions, we can find the polarization 4-vectors:

$$arepsilon^{\mu}(q,\lambda=0) = rac{\omega_l(q)}{q} \sqrt{Z_l(q)} (1,0)^{\mu}
onumber \ arepsilon^{\mu}(q,\lambda=\pm 1) = \sqrt{Z_t(q)} (0,arepsilon_{\pm}(q))^{\mu}$$

[J. Hoefken Zink]

• Obtain dispersion relations

$$egin{aligned} &\omega_I(q)^2 = rac{\omega_I(q)^2}{q^2} \Pi_L(\omega_I(q),q) \ &\omega_t(q)^2 = q^2 + \Pi_T(\omega_t(q),q) \end{aligned}$$

PLASMON DECAY AMPLITUDE

• In effective theory can write the plasmon decay amplitude in the SM as

$$\mathcal{M} = \frac{G_F}{\sqrt{2}} \frac{1}{\sqrt{4\pi\alpha}} \left[\varepsilon_{\mu}(\omega_l, q) C_V \left(\Pi_L(\omega_l, q) \left(1, \frac{\omega_l}{q} \hat{q} \right)^{\mu} \left(1, \frac{\omega_l}{q} \hat{q} \right)^{\nu} \right) \right. \\ \left. + \varepsilon_{\mu}(\omega_t, q) g^{\mu i} \left(C_V \Pi_T(\omega_t, q) \left(\delta^{ij} - \hat{q}^i \hat{q}^j \right) \right. \\ \left. + C_A \Pi_A(\omega_t, q) (i \varepsilon^{ijm} \hat{q}^m) \right) g^{\nu j} \right] \overline{u}(p_1) \gamma_{\nu} (1 - \gamma_5) v(p_2)$$

• Write this in terms of effective vertex $\Gamma_{\lambda}^{\mu\nu}$ as function of couplings $C_V \& C_A$ $\mathcal{M} = \frac{G_F}{\sqrt{2}} \left(\Gamma_{\lambda}^{\mu\nu} \varepsilon_{\mu}(\boldsymbol{q}, \lambda) \right) \ \bar{u}(p_1) \gamma_{\nu} (1 - \gamma_5) u(p_2)$

• The theoretical prediction for $(g-2)_{\mu}$ within the SM has been determined to

$$a_{\mu}^{\rm SM} = 116\ 591\ 810(43) \times 10^{-11}$$

[Aoyama et al; Phys.Rept. 887 (2020) 1-166]

• The recent Fermilab E989 result

 $a_{\mu}^{\text{FNAL}} = 116\ 592\ 059(22) \times 10^{-11}$ [MUON g-2; PRL 131 (2023), 161802]

when combined with the previous BNL results leads to the 5.2σ excess of

 $\Delta a_{\mu} = 249(48) \times 10^{-11}$

NEUTRINOS AND HUBBLE

- Decay of A' heats neutrino gas and delays the decoupling

 \Rightarrow increase of $N_{\rm eff}$ at early times

• Leads to larger H_0

[Escudero, Hooper, Krnjaic, Pierre; JHEP 1903 (2019) 071]