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SNII as laboratory for new physics

▶ high density and temperature in core makes SN potentially
efficient producers of light, very weakly coupled new physics, e.g.
axions, dark photons, sterile neutrinos ...

▶ dynamics in core shielded by mantle → access to core via
neutrinos from SN 1987A

▶ few events but roughly consistent with expected cooling of
proto-neutron star

▶ limits often based on cooling argument (Raffelt criterion)
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Can we do better?

▶ neutrino observations: wait for next galactic SN

⇒ Need other observables if we want to do more now.

▶ produced particle can escape and decay/convert to SM
→ search for e.g gamma rays
see e.g talks by Francesca, Jorge, Eike

→ search for interactions with detectors at earth
see e.g talks by Andres, David

▶ What happens if the energy goes to the dark sector? Can SN
energy injection affect DM observables at a detectable level?
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Dark Matter Halo
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NFW profile
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▶ N-body simulations predict a universal shape of dark matter
halos: NFW profile

ρNFW =
ρ0r3

s

r(r + rs)2

▶ ρ proportional 1/r at small r , inner slope α = −1 (dark matter
cusp)
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Density profiles of dwarfs spheroidals

photo for Fornax dwarf galaxy

▶ velocity distribution of stars traces gravitation potential, i.e. mass
profile

▶ overall mass dominated by dark matter
▶ can determine density profile from stellar kinematics
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Dark matter cores

Oh et al 2015, 1502.01281

▶ some observations prefer slopes α = 0, i.e DM cores
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Cored profile
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▶ flat inner profile (α = 0), size controlled by core radius rc

▶ can form due to baryon feedback or non standard dark matter
properties (→ self-interacting dark matter, fuzzy dark matter ...)
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Simulations with baryon feedback

Baryon feedback can transform an originally NFW cusp into a core
Read et al ’15, 1508.04143
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Dwarf spheriodal halo profiles
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input data from Read et al ’18, 1808.06634
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Gravitational binding energy

▶ cored halos have more material at larger radius ⇒ less
gravitational binding energy

▶ need additional energy to transform a cuspy to a cored halo
▶ ∆E is a function of rc

▶ from gravitational binding energy and virial theorem

∆E = 8πG
∫

dr r [Mc(r)ρc(r)− MNFW (r)ρNFW (r)]

▶ taking upper limit on rc → ∆Emax ∼ 1051 to 1054 erg

S. Vogl (University of Freiburg) SUPRISE 2025, Madrid 11



SN as energy sources

▶ type II (core collapse) supernova typically release about
3 × 1053 erg of which only about 1% goes into visible explosion

▶ all stars with 8m⊙ ≲ m∗ ≲ 40m⊙ explode on time scales much
less than age of galaxy
⇒ only need to know fraction of stars in this mass range and
overall stellar mass

▶ stellar mass: measured
▶ mass distribution of stars: assume Kroupa initial mass mass

function, ≈ 3 × 10−3 stars in right mass range

Etot ≈ 2.5
M∗
m⊙

× 1051 erg with M∗ ∼ 106m⊙
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Allowed energy fractions

Carina Draco Fornax Leo I Leo II Sculptor Sextans UMi
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10−5 of energy released by SN sufficient to produce cores in excess
of observations

S. Vogl (University of Freiburg) SUPRISE 2025, Madrid 13



Particle physics
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Key questions

▶ Can we produce enough exotic particle?
▶ Can they travel astrophysical distances?
▶ Can they deposit their energy in the dark matter halo?
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Benchmark models

Consider a set of simple, well motivated benchmark models for
production in SN
▶ dark photon
▶ dark Higgs
▶ Z ′ from B − L
▶ Z ′ from Lµ − Lτ

and couple all of them to dark matter

For illustration: focus on dark photon now
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Production in SN

▶ dark photons couples to proton and electron
▶ production in SN dominated by

▶ nucleon bremsstrahlung: p + n → p + n + Z ′

▶ semi-Compton scattering: γ + e− → Z ′ + e−

▶ significant (O(1)) energy fraction is possible, compare SN1987A
bound
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Lifetime

▶ dark photons are not stable
▶ typical distance to decay l = γβ/Γ

⇒ Can particle travel astrophysical distances of O(kpc)?
▶ direct couplings to electrons but not neutrinos or photons

▶ for 2me ≤ mZ ′ : relatively quick decays to e+e−

▶ for 2me > mZ ′ : fairly slow, loop induced to decay to 3γ
▶ for 2mχ < mZ ′ decay to DM possible

instantaneous decay to dark matter for relevant couplings gχ with
BR=100%

⇒ split in parameter space between these options
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Optical depth

▶ Z’ (or DM from its) decay must scatter on halo DM to transfer
energy

▶ probability of scattering controlled by optical depth τ

τ ≈ σ

mχ

∫
ρdl

▶ for density profiles of cored halos τ ≥ 1 for

σ ≳ (1 − 2)× 10−25cm2 · mχ

MeV

largish cross section: need mDM ≲ 100 MeV and gDM ≳ 0.01 - 1
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Putting everything together
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Conclusions

▶ total energy release from SN explosions over lifetime of galaxy is
huge

▶ for O(1) energy absorbed dwarf galaxies sensitive to ≈ 10−5 of
total energy release

▶ conditions for sufficient energy release and efficient absorption
possible in a range of simple benckmark models (dark photon,
dark Higgs, B − L, Lµ − Lτ )

▶ halo shape allows testing couplings well beyond usual SN1987a
bound, two orders of magnitude improvements possible
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Backup material
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Testable parameter space: Dark Higgs
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Testable parameter space: U(1)B−L
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Testable parameter space: U(1)Lµ−Lτ
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Limits on gDM
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Z ′ free streaming

EZ′ = 10 MeV

EZ′ = 100 MeV
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energy loss via scattering on halo dark matter
▶ Z’ stable: Z’ DM → Z’ DM scattering (Compton-like cross section)
▶ Z’ decays to DM : DM DM → DM DM scattering

(Bhabha/Moeller-like scattering cross section)
for τ ≥ 1: mDM ≲ 100 MeV and sizeable gχ
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