the neutrino dark matter connection

JOSÉ W F VALLE

8th IBS Conference UAM, 13-17 Nov 2023

FINNOVACIÓN

 $\sin^2 2\theta_{13} = 0.0853^{+0.0024}_{-0.0024}$ (2.8% precision)

PF de Salas et al JHEP02(2021)071

https://globalfit.astroparticles.es,

Agreement with NuFit and Bari

@jwvalle2

DUNE 2008.12769 Hyper-K ESSnuSB

PhysRevLett117(2016)061804 New J.Phys. 19 (2017) 9, 093005 PhysRevD97 (2018) 095026

DUNE 2008.12769 Hyper-K ESSnuSB

Expected CP discovery Sensitivity: standard 3-nu vs Unitarity violation

Original

Schechter & JV PRD22 (1980) 2227 Rodejohann, JV Phys.Rev. D84 (2011) 073011

Versus PDG phase convention

GERDA 2009.06079

3-massive case

Lower bounds from oscil. legacy + family symmetries

Dorame et al PhysRevD86(2012)056001 Dorame et al Nucl.Phys.B861 (2012) 259-270 King et al Phys.Lett. B724 (2013) 68-72 etc

From Barreiros et al JHEP04(2021)249

3-massive case

Lower bounds from oscil. legacy + family symmetries

Dorame et al PhysRevD86(2012)056001 Dorame et al Nucl.Phys.B861 (2012) 259-270 King et al Phys.Lett. B724 (2013) 68-72 etc

From Barreiros et al JHEP04(2021)249

Significance

Schechter, Valle 1982 Duerr, Lindner, Merle JHEP06(2011)091 B.J.P. Jones 2108.09364 (TASI 2020)

@jwvalle5

SEESAW
dynamics $u^2 < 0$ $v_3v_1 \sim v_2^2$

Mandal et al PRD101 (2020) 115030 JHEP03(2021)212 & JHEP07(2021) 029

Mandal et al PRD101 (2020) 115030 JHEP03(2021)212 & JHEP07(2021) 029

TYPE I

Minkowski 77 Gellman Ramond Slansky 80 Glashow, Yanagida 79 Mohapatra Senjanovic 80 Lazarides Shafi Weterrich 81 Schechter-Valle 80 & 82

TYPE II

Schechter-Valle 80 & 82 Miranda et al PLB829 (2022) 137110 PRD105 (2022) 095020

Mandal et al PRD101 (2020) 115030 JHEP03(2021)212 & JHEP07(2021) 029

TYPE I

Minkowski 77 Gellman Ramond Slansky 80 Glashow, Yanagida 79 Mohapatra Senjanovic 80 Lazarides Shafi Weterrich 81 Schechter-Valle 80 & 82

TYPE II

Schechter-Valle 80 & 82 Miranda et al PLB829 (2022) 137110 PRD105 (2022) 095020

L-R seesaw # of Rs = # Ls (3,3) SM seesaw any # of singlets (3,m)

Mandal et al PRD101 (2020) 115030 JHEP03(2021)212 & JHEP07(2021) 029

TYPE I

Minkowski 77 Gellman Ramond Slansky 80 Glashow, Yanagida 79 Mohapatra Senjanovic 80 Lazarides Shafi Weterrich 81 Schechter-Valle 80 & 82

TYPE II

Schechter-Valle 80 & 82 Miranda et al PLB829 (2022) 137110 PRD105 (2022) 095020

L-R seesaw # of Rs = # Ls (3,3) SM seesaw any # of singlets (3,m) MISSING PARTNER (3,2) min viable type1 seesaw (3,1) scoto-seesaw template

 m_{etaeta}

Mandal et al PRD101 (2020) 115030 JHEP03(2021)212 & JHEP07(2021) 029

TYPE I

Minkowski 77 Gellman Ramond Slansky 80 Glashow, Yanagida 79 Mohapatra Senjanovic 80 Lazarides Shafi Weterrich 81 Schechter-Valle 80 & 82

TYPE II

Schechter-Valle 80 & 82 Miranda et al PLB829 (2022) 137110 PRD105 (2022) 095020

L-R seesaw # of Rs = # Ls (3,3)
SM seesaw any # of singlets (3,m)
MISSING PARTNER (3,2) min viable type1 seesaw (3,1) scoto-seesaw template

LOW-SCALE Type1 SEESAW (3,6) ISS & LSS

Mohapatra,Valle 86 Akhmedov et al Phys.Rev.D53 (1996) 2752 PhysLettB368 (1996) 270 Malinsky et al PhysRevLett95(2005)161801 @iwvalle6

cLFV persists in the massless neutrino limit

Bernabeu et al B187 (1987) 303-308

double protection in low scale seesaw

radiative

(3,6)

double protection in low scale-seesaw

radiative

is dark matter the seed of neutrino mass?

Mandal et al Phys.Lett.B821 (2021) 136609

(3,6)

@jwvalle8

low-scale type-1

Oark inverse seesa (3,6)

LambdaCDM

Xenon1T PhysRevLett.121.111302 PandaX Lux-Zepellin

Mandal et al Phys.Lett.B821 (2021) 136609

With large cLFV effects

@jwvalle9

low-scale type-1 **CERK FIREALSEESAW** (3,6)

$$M_{\nu} = \begin{pmatrix} 0_{3\times3} & m_D & \varepsilon \\ m_D^T & 0_{3\times3} & M \\ \varepsilon^T & M & 0_{3\times3} \end{pmatrix}$$

Carcamo, Vishnudath, J.V. JHEP 09 (2023) 046 $m_{\text{light}} = -\left[m_D M^{-1} \varepsilon^T + \varepsilon M^{-1} m_D^T\right]$

(Also Batra, Camara, Joaquim, 2305.01687)

low-scale type-1 **Cark Finear Seesa** (3,6)

$$M_{\nu} = \begin{pmatrix} 0_{3\times3} & m_D & \varepsilon \\ m_D^T & 0_{3\times3} & M \\ \varepsilon^T & M & 0_{3\times3} \end{pmatrix}$$

Carcamo, Vishnudath, J.V. JHEP 09 (2023) 046 $m_{\text{light}} = -\left[m_D M^{-1} \varepsilon^T + \varepsilon M^{-1} m_D^T\right]$

(Also Batra, Camara, Joaquim, 2305.01687)

Ma hep-ph/0601225 Tao hep-ph/9603309 Dark-mediated nu-mass loop

@jwvalle11

LOOP

Eur. Phys. J. C (2020) 80:908 $\begin{array}{c} \phi \\ \eta \\ L \\ F \\ \Omega \end{array}$

M. Hirsch et al JHEP 10 (2013) 149 A. Merle et al JHEP 07 (2016) 013 Rocha-Moran, Vicente JHEP 07 (2016) 078 Restrepo, Rivera JHEP 04 (2020) 134 Avila et al Eur.Phys.J.C 80 (2020) 10, 908

Karan, Sadhukhan, Valle 2308.09135

Eur. Phys. J. C (2020) 80:908

M. Hirsch et al JHEP 10 (2013) 149 A. Merle et al JHEP 07 (2016) 013 Rocha-Moran, Vicente JHEP 07 (2016) 078 Restrepo, Rivera JHEP 04 (2020) 134 Avila et al Eur.Phys.J.C 80 (2020) 10, 908

Karan, Sadhukhan, Valle 2308.09135

No DM coannihilation:

With DM coannihilations

Higher v_Ω (4 GeV): Fermion-Scalar Coannihilation_

Lower v_Ω (1.5 GeV): Fermion-Fermion Coannihilation_

Karan, Sadhukhan, Valle 2308.09135

Higher v_Ω (4 GeV): Fermion-Scalar Coannihilation_

LFV Process	Current Bound	Future Sensitivity				
$\mathcal{B}(\mu \to e\gamma)$	4.2×10^{-13} [44]	$6.0 imes 10^{-14}$ [45]				
$\mathcal{B}(\mu \to 3e)$	$1.0\times 10^{-12}~[46]$	$\sim 10^{-16} \; [47, 48]$				
$\mathcal{C}(\mu, Au \to e, Au)$	$7.0 imes 10^{-13}$ [49]	_				
$\mathcal{C}(\mu,Ti\to e,Ti)$	$4.3 imes 10^{-12}$ [49]	$\sim 10^{-18}$ [50]				
$\mathcal{C}(\mu, Pb \to e, Pb)$	$4.6 imes 10^{-11}$ [49]	_				
$\mathcal{C}(\mu, Al \to e, Al)$	—	$\sim 10^{-17}$ [51, 52]				

LEP

Lower v_{Ω} (1.5 GeV): Fermion-Fermion Coannihilation_

0.4

$\xi_i = (\Omega h_i^2 / \Omega h^2)$														
ī														

Karan, Sadhukhan, Valle 2308.09135

0.6

DBD lower bound

0.2

1.0

0.8

LOOP TREE

Simplest version in Phys.Lett.B 789 (2019) 132-136 and Phys.Lett.B 819 (2021) 136458

Leite, Sadhukhan, Valle 2307.04840

Atm neutrinoseesaw scale

Leite, Sadhukhan, Valle 2307.04840

Scoto seesaw

dynamical Solar Scoto scale

B-L charges $(f_{1R}, f_{2R}, N_R) \sim (-4, -4, 5)$

Drell-Yan Nr pair production

OWEFING the seesaw scale (3,3)

Leite, Sadhukhan, Valle 2307.04840 **Tiny induced leptophilic higgs vev**

OWEFING the seesaw scale (3,3)

Leite, Sadhukhan, Valle 2307.04840 **Tiny induced leptophilic higgs vev**

SCOto seesaw

HIGGS DISCOVERY NOT THE LAST BRICK TO THE SM

Oscillation discovery brought in

precision oscillation program, CP, octant, ordering, NSI,unitarity, OnuDBD, CEvNS ...

HIGGS DISCOVERY NOT THE LAST BRICK TO THE SM

Oscillation discovery brought in

precision oscillation program, CP, octant, ordering, NSI,unitarity, OnuDBD, CEvNS ...

DM may seed or mediate Neutrino mass generation

HIGGS DISCOVERY NOT THE LAST BRICK TO THE SM

Oscillation discovery brought in

precision oscillation program, CP, octant, ordering, NSI, unitarity, OnuDBD, CEvNS ...

DM may seed or mediate Neutrino mass generation

Besides direct and indirect detection Can have cLFV and Collider imprints

@jwvalle16