A BAYESIAN ANALYSIS WITH MACHINE LEARNING IN DM DIRECT DETECTION

Martín de los Rios*, Andres Perez & David Cerdeño

*martindelosrios13@gmail.com

ML analysis to obtain posteriors DM-nucleon interaction with NR-EFT DM differential rate for a DD experiment

Simulate the expected signal

Parameter space that can be reconstructed

MACHINE LEARNING BAYESIAN ANALYSIS

$P(\Theta|x) = P(x|\Theta) P(\Theta) / P(x)$

P(0|x) = P(x|0) P(0) / P(x)

Posterior probability of the parameters 0 of interest given the data x.

$P(\Theta | x) = P(x | \Theta) P(\Theta) / P(x)$

Posterior probability of the parameters 0 of interest given the data x.

Probability of the data x given the parameters 0.

$P(\Theta | x) = P(x | \Theta) P(\Theta) / P(x)$

Posterior probability of the parameters 0 of interest given the data x. Probability of the data x given the parameters 0.

Prior probability of the parameters Θ.

$P(\Theta | x) = P(x | \Theta) P(\Theta) / P(x)$

Posterior probability of the parameters 0 of interest given the data x. Probability of the data x given the parameters Θ .

Prior probability of the parameters Θ.

Probability of the data x also call evidence.

 $\mathbf{r(\Theta,x)} = \mathbf{P(\Theta|x)} / \mathbf{P(\Theta)} = \mathbf{P(x|\Theta)} / \mathbf{P(x)} = \mathbf{P(x,\Theta)} / \mathbf{P(\Theta)P(x)}$

BAYESIAN ANALYSIS WITH SWYFT

r(0,x) = P(0,x) / P(0) P(x)

BAYESIAN ANALYSIS WITH SWYFT

BINARY CLASSIFICATION

 $\rightarrow P(K=1|(0,X)) = r(0,x)/[1+r(0,x)]$

Supervised Learning

1) We measure some data x

2) We sample model parameters Θ from prior $P(\Theta)$

3) We feed the neural network with pairs (x, Θ) , and the network gives back de $r(\Theta, x)$

4) We multiply $r(\Theta, x)$ by $P(\Theta)$ and obtain $P(\Theta | x)$

• In our case the parameters of interest will be the EFT parameters and the DM mass.

- In our case, the data x will be the signal measured by XENONnT, this can be:
 - \circ The total number of events.
 - \circ The differential rate.
 - The full s1-s2 plane.
 - \circ $\,$ We also add all the relevant

backgrounds, including Ce ν ns

DATA SAMPLE GENERATION

For DM particles with spin up to $\frac{12}{2}$, the effective DM-nucleon scattering interaction Lagrangian

$$\mathcal{L}_{\rm EFT} = \sum_{\tau} \sum_{i} c_i^{\tau} \mathcal{O}_i \overline{\chi} \chi \overline{\tau} \tau$$

nucleon basis:

$$c^{p}: \text{proton} \qquad c_{i}^{0} = \frac{1}{2} \left(c_{i}^{p} + c_{i}^{n} \right)$$
$$c^{n}: \text{neutron} \qquad c_{i}^{1} = \frac{1}{2} \left(c_{i}^{p} - c_{i}^{n} \right)$$

For DM particles with spin up to $\frac{12}{2}$, the effective DM-nucleon scattering interaction Lagrangian

$$\mathcal{L}_{\rm EFT} = \sum_{\tau} \sum_{i} c_i^{\tau} \mathcal{O}_i \overline{\chi} \chi \overline{\tau} \tau^{\circ \circ \circ} \qquad \begin{array}{c} \text{i=14} \\ \text{possible} \\ \text{interactions} \end{array}$$

-1

nucleon basis:

$$c^p$$
: proton $c_i^0 = \frac{1}{2} \left(c_i^p + c_i^n \right)$ c^n : neutron $c_i^1 = \frac{1}{2} \left(c_i^p - c_i^n \right)$

For DM particles with spin up to $\frac{12}{2}$, the effective DM-nucleon scattering interaction Lagrangian

$$\mathcal{L}_{\text{EFT}} = \sum_{\tau} \sum_{i} c_{i}^{\tau} \mathcal{O}_{i} \overline{\chi} \chi \overline{\tau} \tau^{\circ \circ \circ} \qquad \begin{array}{c} \text{i=14} \\ \text{possible} \\ \text{interactions} \end{array}$$
nucleon basis:
$$c^{p}: \text{proton} \qquad c_{i}^{0} = \frac{1}{2} (c_{i}^{p} + c_{i}^{\circ}) \qquad \begin{array}{c} \text{01:} \\ \text{spin-independent} \\ 04: \\ \text{spin-dependent} \end{array}$$

$$c^{n}: \text{neutron} \qquad c_{i}^{1} = \frac{1}{2} (c_{i}^{p} - c_{i}^{n}) \qquad \begin{array}{c} \text{oo} \\ 01: \\ \text{spin-independent} \\ 04: \\ \text{spin-dependent} \end{array}$$

For DM particles with spin up to $\frac{12}{2}$, the effective DM-nucleon scattering interaction Lagrangian

$$\mathcal{L}_{\rm EFT} = \sum_{\tau} \sum_{i} c_i^{\tau} \mathcal{O}_i \overline{\chi} \chi \overline{\tau} \tau$$

Change to polar coordinates:

$$c_{i}^{0} = \frac{1}{2} (c_{i}^{p} + c_{i}^{n}) = A_{i} \sin(\theta_{i})$$

$$c_{i}^{1} = \frac{1}{2} (c_{i}^{p} - c_{i}^{n}) = A_{i} \cos(\theta_{i})$$

Natural choice for the EFT parameter space because the interaction cross section:

For SI (O1) $\sigma_{\chi N}^{\text{SI}} = -\frac{A_1^2 \mu_{\chi N}^2}{A_1^2 \mu_{\chi N}^2}$

$$\sigma_i \propto A_i^2$$

24

For DM particles with spin up to $\frac{12}{2}$, the effective DM-nucleon scattering interaction Lagrangian

$$\mathcal{L}_{\rm EFT} = \sum_{\tau} \sum_{i} c_i^{\tau} \mathcal{O}_i \overline{\chi} \chi \overline{\tau} \tau$$

Change to polar coordinates:

$$c_i^0 = \frac{1}{2} (c_i^p + c_i^n) = A_i \sin(\theta_i)$$

$$c_i^1 = \frac{1}{2} \left(c_i^p - c_i^n \right) = A_i \cos(\theta_i)$$

For each operator 2 parameters:

- amplitude (cross-section)
- phase

$$(\sigma_i, \Theta_i, m_{DM})$$

DM DIFFERENTIAL RATE

From NR-EFT operators to differential rate with WimPyDD

Inputs:

- Operator
- Parameters:
 - amplitude (cross-section)
 - phase
 - DM mass
- DM halo model
- DD experiment (XENONnT)

Output:

XENONnT

Universe 2021, 7(8), 313

Phys. Rev. Lett. 131, 041003 (2023)

27

DATA REPRESENTATION: S1 vs S2 plane

NR-EFT: O1 $\sigma = 10^{-47} \text{Cm}^2$ varying σ , θ , and $m_{_{DM}}$ $\Theta = \pi/2$ ($C^{p} = C^{n}$) m=50GeV 104 10^{4} cS2 [PE] :S2 [PE] 10³ 103 Electronic Recoils **Electronic Recoils** Wall Leakage Wall Leakage Radiogenic Neutrons Radiogenic Neutrons Accidental Coincidences Accidental Coincidences CEVENs CEVENS WIMP 10² 10^{2} 60 80 100 20 40 80 20 40 60 100 cS1 [PE] cS1 [PE] 30

XENONnT 20ty

We generate a 10k pseud experiments per operato

DATA REPRESENTATION: number of events

RESULTS

RESULTS

S1 vs S2

S1 vs S2

RESULTS: $oldsymbol{\sigma}$ Detection plot

XENONnT 20ty 01 operator

41

CONCLUSIONS

- We developed a bayesian analysis to explore the reach of direct detection experiments.
- The ML implementation (SWYFT) is fundamental for estimating the posteriors in a fast way.
- We presented here O1 (SI) & O4 (SD) as first examples.
- $\bullet\,$ We computed the parameter space where σ and m can be reconstructed.
- We compared: total number of events vs the differential rate vs the full S1-S2 space.

- Apply to other NR-EFT operators \longrightarrow combine operators
- Different DD experiments \rightarrow combine experiments
- Compare with MCMC analysis.

BACK-UP

2D POSTERIOR. Discovery s1-s2 (01)

52

2d Posterior. Exclusion s1-s2 (01)

53

O1 UNCERTAINTIES

04 UNCERTAINTIES

XENONnT 20ty 011 operator

RESULTS: σ reconstruction plot

