

Novel Nonperturbative Renormalization Scheme (based on Gradient Flow)

> Anna Hasenfratz University of Colorado Boulder

Lattice Gauge Theory Contributions to New Physics Searches June 16, 2023

Gradient flow vs continuous RG transformations

GF can be *interpreted* as continuous RG with $\mu \propto 1/\sqrt{8t}$

- in infinite volume
- for *local* operators

$$- g_{GF}^2 = \mathcal{N}t^2 < E(t) > \implies \beta_{GF}(a;g_{GF}^2) =$$

- $\mathcal{O} = \bar{\psi}(x)\Gamma\psi(x)$ or $G_{\mathcal{O}}(x_4, t) = \langle \mathcal{O}(\bar{p} = 0, x_4; t) \rangle$

$$\implies t \frac{d\log G_{\mathcal{O}}(t, x_4)}{d t} = \gamma_{\mathcal{O}}(t) + \eta_{\psi}(t)$$

A. Carosso, AH, E. Neil, PRL 121,201601 (2018)

$$= -t \frac{dg_{GF}^2(a;t)}{dt}$$

t)
$$\mathcal{O}(\bar{p} = 0,0; \mathbf{t} = \mathbf{0}) \rangle_{\boldsymbol{t}}$$

New RG scheme for composite fermions

- 1. Simulations at bare coupling β_b lattice spacing a define IR scale via GF : $\mu_{IR} = 1/\sqrt{8t_0}$, where $g_{GF}^2(t_0) = 0.3 \mathcal{N} \approx 15.8...$
- 2. Define matching factor $Z_{\mathcal{O}}^{GF}(a;t)$ for operator local bare operator $\mathcal{O}(a)$ traditionally $Z_{\mathcal{O}}(a; t_0)\mathcal{O}(a) = \mathcal{O}(a)^{\text{tree-level}}$; now

$$Z_{\mathcal{O}}^{GF}(a;t_0)\left(\frac{\mathcal{O}(a)}{\mathcal{O}(a;t_0)}\right) = \left(\frac{\mathcal{O}(a)}{\mathcal{O}(a;t_0)}\right)$$

- 3. Connect IR to UV : $\lim_{a \to 0} Z_{\mathcal{O}}^{GF}(a; t_0) \longrightarrow Z_{\mathcal{O}}^{GF}(a; \mu_{UV})$
- 4. Match to \overline{MS} in the UV : $c^{\overline{MS} \leftarrow GF}(\mu_{IV})$ (perturbative calculation)

A.H., C. Monahan, M. Rizik, A. Shindler and O. Witzel Lattice'21 (arXiv:2201:09740)

 $\frac{\bar{Z}_{\mathcal{O}}^{GF}(g_{UV}^2)}{\bar{Z}_{\mathcal{O}}^{GF}(g_{IR}^2)} = \exp\left\{\int_{g_{UV}}^{g_{UV}} \mathrm{d}g'\frac{\gamma_{\mathcal{O}}(g'^2)}{\beta(g'^2)}\right\}$

 $c^{\overline{MS}} \leftarrow$ 4) Connect to \overline{MS} : at tree level

At the end

 $\mathcal{O}_{R}^{\overline{MS}}(\mu_{IIV}) = c^{\overline{MS} \leftarrow GF}(\mu_{UV}, \mu_{IR}) Z_{\mathcal{O}}^{GF}(a; \mu_{IR}) \mathcal{O}(a)$

$$GF(\mu_{UV}) = \left(\frac{g_{GF}^2(\mu_{UV})}{g_{MS}^2(\mu_{UV})}\right)^{-\gamma_0^{(0)}/2b_0}$$

 $c^{\overline{MS}} \leftarrow$ 4) Connect to \overline{MS} : at tree level

At the end

 $\mathcal{O}_{R}^{\overline{MS}}(\mu_{UV}) = c^{\overline{MS} \leftarrow GF}(\mu_{UV}, \mu_{I})$

$$GF(\mu_{UV}) = \left(\frac{g_{GF}^2(\mu_{UV})}{g_{MS}^2(\mu_{UV})}\right)^{-\gamma_0^{(0)}/2b_0}$$

$$U_{IR}$$
) $Z_{\mathcal{O}}^{GF}(a;\mu_{IR})\mathcal{O}(a)$

 $c^{\overline{MS}} \leftarrow$ 4) Connect to \overline{MS} : at tree level

At the end

 $\mathcal{O}_{R}^{\overline{MS}}(\mu_{UV}) = c^{\overline{MS} \leftarrow GF}(\mu_{UV}, \mu_{I})$

$$GF(\mu_{UV}) = \left(\frac{g_{GF}^2(\mu_{UV})}{g_{MS}^2(\mu_{UV})}\right)^{-\gamma_0^{(0)}/2b_0}$$

$$Z_{\mathcal{O}}^{GF}(a;\mu_{IR})\mathcal{O}(a) \qquad \qquad Z_{\mathcal{O}}^{GF}(a;t_0) = \left(\frac{\mathcal{O}(a)}{\mathcal{O}(a;t_0)}\right)^{-1}$$

 $c^{\overline{MS}} \leftarrow$ 4) Connect to \overline{MS} : at tree level

At the end

$$\mathcal{O}_{R}^{\overline{MS}}(\mu_{UV}) = c^{\overline{MS} \leftarrow GF}(\mu_{UV}, \mu_{VV})$$

The new scheme is - nonperturbative

- gauge invariant
- requires only the calculation of flowed correlators

$$GF(\mu_{UV}) = \left(\frac{g_{GF}^2(\mu_{UV})}{g_{\overline{MS}}^2(\mu_{UV})}\right)^{-\gamma_0^{(0)}/2b_0}$$

Numerical details

Pilot study:

- $N_f = 2$ Moebius domain wall fermions (stout smeared, Symanzik gauge)
- $24^3 \times 64$, $32^3 \times 64$ volumes
- $am_f = 0$ in the weak coupling, $am_f = 0.005, 0.010$ in confined regime
- Wilson fermion flow
- Determine $\beta(g^2)$ and $\gamma_{\mathcal{O}}(g^2)$ up to $g^2 \gtrsim 16$

A.H., C. Monahan, M. Rizik, A. Shindler and O. Witzel Lattice'21 (arXiv:2201:09740)

5

RG β function

We use the continuous β function (CBF) method:

- GF renormalized coupling: $g_{GF}^2(t) = \mathcal{N}t^2 \langle E(t) \rangle$
- RG β function :

 $\beta(g_{GF}) = -t \frac{dg_{GF}^2}{dt}$

- Infinite volume limit : $(a/L)^4 \rightarrow 0$ while $\sqrt{8t} \ll L$

• $am_f = 0$ chiral limit : $am_f \rightarrow 0$ (only in confining regime) • Continuum limit : $t/a^2 \rightarrow \infty$ while keeping g_{GF}^2 (or t) fixed AH, O. Witzel, *Phys.Rev.D* 101 (2020) 3 Fodor et al, EPJWeb Conf. 175, 08027 (2018)

> Details for $N_f = 0$ in AH, C.Peterson, O.Witzel, J.VanSickle 2301.08274

The continuous β function (CBF) $N_f = 2$

Prior results : up to $g_{GF}^2 \approx 6.0$ shows minimal cutoff effects

AH, O. Witzel, *Phys.Rev.D* 101 (2020) 3

The continuous β function (CBF) $N_f = 2$

Prior results : up to $g_{GF}^2 \approx 6.0$ shows minimal cutoff effects New results : extend existing data to the chirally broken regime, up to $g_{GF}^2 \le g_{GF}^2(t_0) \approx 15.9$

AH, O. Witzel, *Phys.Rev.D* 101 (2020) 3

Colored points: raw data Continuum limit: gray band

 Λ_{GF} parameter, $N_f = 2$

Calculate the Λ parameter from the β function:

$$\left[-\int_{0}^{g^{2}(t_{0})} \mathrm{d}x \left(\frac{1}{\beta_{GF}(x)} + \frac{1}{b_{0}x^{2}} - \frac{b_{1}}{b_{0}^{2}x}\right)\right], \quad g^{2}(t_{0}) \approx 15.$$

Need β_{GF} precisely at small g_{GF}^2 smallest $g^2 \approx 1$

— find an effective "4-loop" β function (a single fit coefficient)

 $\Lambda_{\overline{MS}} \sqrt{8t_0} = 0.675(20)$ $\Lambda_{\overline{MS}} = 305(10)$ MeV (statistical errors only)

Compare to FLAG 2021: ($N_f = 2$)

$\Lambda_{\overline{MS}} = 305(10)$ MeV (statistical errors only) Consistent with FLAG 2021 values

)

IMIN	NAR	Y
38	30	400

Anomalous dimension and Z_{o}

colored points show raw data: at fixed bare coupling, changing flow time

Combine $\gamma_{\mathcal{O}}(a;t)$ and $g^2_{GF}(a;t)$ to predict the running anomalous dimension $\gamma_{\mathcal{O}}(g_{GF}^2)$

Continuum limit:

• $a^2/t \rightarrow 0$ at fixed g_{GF}^2 (pink band)

Anomalous dimension closely tracks the 1-loop line

• need more data at strong coupling to cover $g_{GF}^2 \le g_{GF}^2(t_0)$

So far:

- CBF method allows calculation of RG β function even in the confining regime • Preliminary prediction for $N_f = 2$
 - $\Lambda_{\overline{MS}} = 305(10)$ (statistical error only)
- Calculation of meson $\gamma_{\mathcal{O}}(g^2)$ is similar

Put it together:

- Integrate $\int dg^2 \gamma(g^2) / \beta(g^2)$
- Connect to \overline{MS} : 1-loop is straightforward; 2-loop needs PT • Calculate the IR matching factor (look up)
 - $N_f = 3$ and/or 4 is straightforward
 - calculation with Wilson fermions could be easier; would provide check and could even be combined with the DWF result

 β function , $N_f = 2$

Continuum extrapolation

a²/t

Anomalous dimension and Z_{o}

Often $\langle \mathcal{O}_{\Gamma}(t) \rangle = 0$; consider a GF two-point function $G_{\mathcal{O}}(x_4, t) = \left[d^3x d^3x' \langle \mathcal{O}(\mathbf{x}, x_4; t) \mathcal{O}(\mathbf{x}', 0; t = 0) \rangle \right]$

Only one operator is flowed, so coarse graining is OK

$$G_{\mathcal{O}}(g_i, x_4) = b^{-\Delta_{\mathcal{O}}} G_{\mathcal{O}}(g_i^{(b)}, x_4/b), \qquad x_4 \gg b$$

The scaling dimension is

• $\Delta_{0} = d_{0} + \gamma_{0} + \eta$ for a linear RG (fermions) $(\eta/2)$ is the anomalous dimension of the fermion)

- If \mathcal{O} is a scaling operator, an RG transformation with scale change $b \propto \sqrt{8t/a^2}$ predicts
 - b, $(g_i^{(b)} \text{ are RG flowed couplings})$

A. Carosso, AH, E. Neil, PRL 121,201601 (2018)

Anomalous dimension and Z_{6}

The scaling dimension of $G_{\mathcal{O}}(x_4, t) = \int d^3x d^3x' \langle \mathcal{O}(\mathbf{x}, x_4; t) \mathcal{O}(\mathbf{x}', 0; t = 0) \rangle$ is $\Delta_{\mathcal{O}} = d_{\mathcal{O}} + \gamma_{\mathcal{O}} + \eta$ In the ratio $\mathscr{R}_{\mathcal{O}}(x_4; t) = \frac{G_{\mathcal{O}}(x_4; t)}{G_V(x_4; t)}$ both Z_{χ} and $d_{\mathcal{O}}$ cancel

Use the double ratio $\overline{\mathscr{R}}_{\mathcal{O}}(a; x_4, t) = \frac{\mathscr{R}_{\mathcal{O}}(a; x_4, t = 0)}{\mathscr{R}_{\mathcal{O}}(a; x_4, t)}$ to define the GF scheme

$$\bar{Z}_{\mathcal{O}}^{GF}(a;t_0)\overline{\mathcal{R}}_{\mathcal{O}}(a;x_4,t_0) = \overline{\mathcal{R}}_{\mathcal{O}}^{\text{tree-level}}(a;x_4,t_0) \longrightarrow 1 \text{ as } x_4/\sqrt{8t_0} \to \infty$$

and

$$\gamma_{\mathcal{O}}(a;t) = \mu \frac{d \log \bar{Z}_{\mathcal{O}}^{\text{GF}}(a;\mu)}{d\mu} = 2t \frac{d \log \mathcal{R}_{\mathcal{O}}(a;x_4,t)}{dt}, \qquad \mu = 1/\sqrt{8t}$$

All we need to calculate $\overline{\mathscr{R}}_{\mathscr{O}}(a; x_4, t)$ are the flowed correlators

A. Carosso, AH, E. Neil, PRL 121,201601 (2018)

Anomalous dimension and Z_{o}

 γ_{\odot} is the logarithmic derivative

$$\gamma_{\mathcal{O}}(a;t) = \mu \frac{d \log \bar{Z}_{\mathcal{O}}^{\text{GF}}(a;\mu)}{d\mu} = 2t \frac{d \log \mathcal{R}_{\mathcal{O}}(a;\mu)}{dt}$$

Typical correlator $G_{0}(t) = A_{1}(t)e^{-m_{1}x_{4}} + A_{2}(t)e^{-m_{2}x_{4}} + \dots$ $2t\frac{d\log G_{\mathcal{O}}(t)}{dt} = \frac{d\log A_1(t)}{dt} + \mathcal{O}\left(e^{-(m_2 - m_1)x_4}\right)$

- $\gamma_{\odot}(t)$ is independent of x_4 if $x_4 \ll \sqrt{8t}$
- $\gamma_{\odot}(t)$ corresponds to the lightest state; all others die out

