Scale precision for HVP

• first moment of vacuum polarization $\Pi_1 = d\Pi/dQ^2$

$$\delta a/a = 1\% \rightarrow \delta \Pi_1/\Pi_1 = 2\%$$

(there might be corrections due to change in physical point)

magnetic moment a_{μ} [Mainz'17]

$$\delta a/a = 1\% \rightarrow \delta a_{\mu}/a_{\mu} = 1.8\%$$

sub-percent needs scale determination with few per-mill

window observable

$$\delta a/a = 1\%
ightarrow \delta a_{\mu,
m win}/a_{\mu,
m win} = 0.5\%$$

Pseudoscalar decay constant

leptonic decay rates of pions/kaons:

$$(\pi \to \ell \bar{\nu}_\ell) = |V_{ud}|^2 \times f_\pi^2 (1 + \delta_\pi) \times \dots$$

$$\Gamma(K o \ell \bar{
u}_\ell) = |V_{us}|^2 imes f_K^2(1 + \delta_K) imes \dots$$

•
$$f_{\pi} = 130.56(2)_{\mathrm{exp}}(13)_{\delta}(2)_{\mathrm{V}_{\mathrm{ud}}}$$
 MeV [FLAG]

 \rightarrow 0.10% accuracy

electromagnetic corrections are complicated

CKM matrix elements

Radiative corrections

theory worked out Rome/Southampton [1502.00257]

keep in mind their isospin scheme

• $\delta_{\pi} = 0.0153(19)$ and $\delta_{\kappa} = 0.0024(10)$ [1904.08731] latter is in disagreement with pheno $\delta_{\kappa} = 0.0107(21)$

recently RBC/UKQCD also joined [2211.12865]

Cabibbo-anomaly

- V_{ud} from superallowed beta decays 0.03% error, but values might change 0.97417(21) \rightarrow 0.97373(31)
- *V*_{us} from semileptonic kaon decays plus lattice
- **2** -3σ disrepancies

Omega baryon mass

• $M_{\Omega} = 1672.45(29)$ MeV or $M_{\Xi} = 1316.9(3)$ MeV

ightarrow 0.02% accuracy

- electromagnetic corrections straightforward
- fast inversions (strange), finite volume effects small
- \blacksquare plateau fits difficult \rightarrow use more operators and GEVP, large no of sources, multi state fits, \ldots

Plateau fits - BMW collaboration

- multiple operators (differing in staggered taste)
- two-state fits with different fit ranges
- GEVP based approach [Aubin,Orginos 1010.0202]

 $w_0 = 0.17236(70) \text{ fm} (0.4\% \text{ accuracy})$

Plateau fits - RQCD collaboration

■ single-state fit, fitrange from two-state fit

 $\sqrt{t_0} = 0.1449(8) \text{ fm}$ (0.6% accuracy)

Plateau fits - RBC/UKQCD collaboration

multiple operators with different excited state contribution

Plateau fits - FNAL/MILC collaboration

- two different operators
- 0.2% accuracy

Gradient flow observables

- purely gluonic, dont bother about em effects
- high accuracy, but also note high autocorrelation
- intermediate distance $\sqrt{t_0}$ ~ 0.4 fm, can be sensitive to lattice artefacts (eg. high level of smearing)

Gradient flow cont. extrap

FNAL/MILC collaboration [Gottlieb '23]

FLAG

Figure 51: Results for gradient flow scales.

■ *w*₀ = 0.17177(67) fm [FLAG]

 \rightarrow 0.35% accuracy

note, recent ETM result isnt included and too high

Having multiple ways of setting the scale (*f_π*, *M_Ω*, ...) is as important as having multiple fermion actions.

