FINITE TEMPERATURE TOPOLOGICAL SUSCEPTIBILITY

Kalman Szabo

Forschungszentrum Jülich \& University of Wuppertal

Borsanyi, Fodor, Guenther, Kampert, Katz, Kawanai, Kovacs, Mages, Pasztor, Pittler, Redondo, Ringwald

Calculation of the axion mass based on high-temperature lattice QCD

Nature 53969 (2016)

Main goal

Compute QCD topological susceptibility

- temperature range $0<T<2 \mathrm{GeV}$

■ physical quark masses $m_{u}, m_{d}, m_{s}, m_{c}$

- continuum limit

Using

- $n_{f}=2+1+1$ with isospin breaking corrections

■ staggered and overlap quarks
■ lattices with $N_{t}=8,10,12,16$ and 20

Physics to be captured

■ typical instanton size $1 / T$

■ instantons suppressed by temperature $\exp \left[-S_{Q} / g(T)^{2}\right]$ and dilute gas of instantons remain

■ zero modes in the quark det suppress them further

$$
\rightarrow \chi(T) \text { falls sharply above } T_{c}
$$

$\chi(T)$ from standard approach

$\mathrm{T} \sim 150 \mathrm{MeV}$

$\mathrm{T} \sim 300 \mathrm{MeV}$

$\mathrm{T} \sim 450 \mathrm{MeV}$

$$
\mathrm{Q}=0 \quad 00+1 \quad 0 \quad 0 \quad 0
$$

$\mathrm{T} \sim 600 \mathrm{MeV}$

$$
\begin{equation*}
\mathrm{Q}=0 \quad 0 \quad 0 \tag{0}
\end{equation*}
$$

direct measurement is not feasible, simulate for centuries to get the first $Q>0$ configuration!

$\chi(T)$ from fixed \mathbf{Q} integral

measure temperature derivate and integrate (also [Frison...'16])

$$
-\frac{d \log Z_{Q} / Z_{0}}{d \log T}=b=4+\frac{d \beta}{d T}\left\langle S_{g}\right\rangle_{Q-0}+\sum_{f} \frac{d m_{f}}{d T} m_{f}\langle\bar{\psi} \psi\rangle_{Q-0}
$$

$\mathrm{T} \sim 600 \mathrm{MeV}$

$$
\mathrm{Q}=0
$$

$$
0
$$

$$
0
$$

$\mathrm{T} \sim 600 \mathrm{MeV}$

$\square b$ is related to the slope $T d \chi / d T$
■ better signal using higher Q 's
\square better to integrate in mass than in β.

Integral method in quenched

- integration gives the ratio:

$$
Z_{1} /\left.Z_{0}\right|_{T}=\exp \left(\int_{T_{0}}^{T} d \log T^{\prime} b_{1}\left(T^{\prime}\right)\right) Z_{1} /\left.Z_{0}\right|_{T_{0}}
$$

■ simulate fixed Q (gradient flow) with acc/rej step

$\square \chi$ is higher than $\chi_{\text {DIGA }}$ (slope is same) even at $T \gg T_{c}$

Dilute instanton gas approx

[Gross,Pisarski,Yaffe '81]
1 instanton interactions can be neglected (ideal gas)
2 compute one instanton probability perturbatively (numerical error corrected [Boccaletti,Nogradi 2001.03383])

■ ideal gas already at $T=1.05 T_{c}$ [Kovacs,Vig 2101.01498]
■ Z_{1} / Z_{0} is enough to get the susceptibility

Difficult cont. extrapolation

staggered fermions have no exact fermion zero modes $\operatorname{det}(D+m) \sim\left(m+\lambda_{0}\right)^{|Q|}$ with $\lambda_{0} \neq 0$ on the lattice \rightarrow results in too large $\chi(T)$ and too small slope

Continuum instanton and zero mode

Lattice instanton and zero mode

Lattice artefacts

would be zero mode increases with T

chiral condensate difference
\rightarrow slope of $\chi(T)$

Cont. extrapolation strategy

1 use staggered fermions at $m_{u d}=m_{s}^{\text {phys }}$, continuum extrapolation behaves much better
2 use overlap fermions to calculate difference to $m_{u d}^{\text {phys }}$ by integrating in m

$n_{f}=3+1$ flavor result

■ lesser challenge to work at the strange mass

■ standard and reweighted approach the continuum from different directions

$n_{f}=3+1$ flavor result

- combine with the integral technique
- slope is somewhat below DIGA

■ value is order of magnitude higher than DIGA

Dynamical overlap lattice setup

- tree-level Symanzik gauge action

■ overlap fermions with 2 levels of HEX smearing
■ extra Wilson fermion to avoid topology change and extra bosonic field to cancel Wilson-fermion β-shift [Aoki et al 2006]

■ simulate odd flavor $n_{f}=3$ with help of chiral symmetry
■ find LCP in the three-flavor symmetric point
■ three lattice spacings $N_{t}=6,8,10$
■ multiple volumes $N_{s} / N_{t}=2,3,4$

$n_{f}=2+1+1$ result

$■$ for $T>300 \mathrm{MeV}$ and downto $m_{u d}^{\text {phys }}$ we find

$$
m\langle\bar{\psi} \psi\rangle_{1-0}=1.00(2)
$$

- simple rescaling with $\left(m_{u d} / m_{s}\right)^{2}$ follows

$$
T=300 \mathrm{MeV}
$$

Cont. extrapolation with reweighting

1 compute topological charge Q with Wilson-flow
2 identify $|Q|$ would-be zero eigenvalues λ_{1}, λ_{2}, ..
3 apply reweighting factor $\prod_{i} m_{q} /\left(\lambda_{i}+m_{q}\right)$

$n_{f}=2+1+1$ flavor result

- ideal gas picture valid already at $T=180 \mathrm{MeV}$

■ final result

- include estimates for $m_{u} \neq m_{d}$ and m_{b}

Lighter mass more axions

Have to solve

$$
\frac{d^{2} \theta}{d t^{2}}+3 H(T) \frac{d \theta}{d t}+\frac{\chi(T)}{f_{a}^{2}} \sin \theta=0
$$

Rolling starts when $3 H(T) \approx \sqrt{\chi(T)} / f_{a}$

Axion mass and initial angle $\mathrm{f}_{\mathrm{A}}[\mathrm{GeV}]$

Sources of axions

[Irastorza,Redondo '18]

Reweighting

Problem: In continuum weight is m, on the lattice $m+\lambda_{0}[U]$.
Solution: change weight of configuration by $w[U] \equiv \frac{m}{m+\lambda_{0}[U]}$
$\langle w\rangle_{Q}$ must approach 1 in the continuum limit.

Improves the observable without changing the action.

$$
\chi=\frac{\sum Q^{2} Z_{Q}}{\sum z_{Q}} \rightarrow \chi_{\text {rew }}=\frac{\sum Q^{2}\langle\boldsymbol{w}\rangle_{Q} z_{Q}}{\sum\langle\boldsymbol{\omega}\rangle_{Q} z_{Q}}
$$

Map of simulations

Continuum extrapolation at $\mathrm{T}=150 \mathrm{MeV}$

Continuum extrapolation at $\mathrm{T}=300 \mathrm{MeV}$

Continuum extrapolation at $\mathrm{T}=\mathbf{4 3 0} \mathbf{~ M e V}$

[Bonati et al '18]

Contribution from $Q=0, \pm 1$

$\mathrm{Q}=0,1$ is enough for $\mathrm{T}>1.5 \mathrm{Tc}$ in quenched
Data from /work/mages/QuenchedSusz/torus-z2-condensed/*/*x6

Volume dependence illustration

Q distribution depends (extensive quantity)

susceptibility, kurtosis (intensive quantitites) not

Volume (in)dependence at the phys point

Finite size effect in χ at $\mathrm{T}=180 \mathrm{MeV}$
cont.limit from $N_{t}=8 . .20$

[WB'16]

[Bonati et al '18]

