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Axion mass and topological susceptibility

QCD Action 

Emerging CP-violating term     

Axion action 

CP-violating term cancelled from the condensation of the axion   

Dynamically generated mass
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Determination of χ 

In the chiral limit, χ can be calculated using ChPT:

At (very) high temperature, one can use the Diluted Instanton Gas 
Approximation (DIGA):

Lattice calculations enable first principle determinations of χ in the 
region of temperatures above Tc
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Cosmological evolution of the axion field
Axion field cosmological evolution

Figure adapted from “Axion Cosmology Revisited ”, O. Wantz and
E.P.S. Shellard, Phys. Rev. D 82 (2010) 123508 [arXiv:0910.1066]

C. Bonanno (INFN Firenze) The Peccei–Quinn axion and QCD topology 05/08/22 - ECT? 6/21

Figure adapted from “Axion 
Cosmology Revisited”, O. Wantz and 
E.P.S. Shellard, Phys. Rev. D 82 (2010) 
123508 [arXiv:0910.1066] 

A non-perturbative determination of χ at finite temperature is needed 



Topology on the lattice

Compute χ from Q using the definition

Naïve discretization of q replaces F -> Im(U) in the continuum formula

Better control on lattice artefacts using the clover leaf definition  
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The simplest such closed path on the lattice defines the
elementary plaquette Pµ⌫ :

Pµ⌫(x) ⌘ Uµ(x)U⌫(x + µ̂)U †
µ(x + ⌫̂)U †

⌫ (x) , (10)

and is used to define the Wilson action SW of the lattice
gauge theory (LGT):
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where the inverse coupling � is defined as
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Another operator that is useful in lattice calculations
is the clover-leaf plaquette operator, defined as [78, 79]

Cµ⌫(x) ⌘
1

8

n
Uµ(x)U⌫(x + µ̂)U†

µ(x + ⌫̂)U †
⌫ (x) + U⌫(x)U†

µ(x + ⌫̂ � µ̂)U†
⌫ (x � µ̂)Uµ(x � µ̂) + (13)

+ U
†
µ(x � µ̂)U†

⌫ (x � ⌫̂ � µ̂)Uµ(x � ⌫̂ � µ̂)U⌫(x � ⌫̂) + U
†
⌫ (x � ⌫̂)Uµ(x � ⌫̂)Uµ(x � ⌫̂ + µ̂)U †

µ(x) � h.c.
o

.

This operator is used in the literature as a way to improve
the Yang-Mills lattice action, particularly in the presence
of fermions. In the context of this paper, it serves two
purposes: we use it to test the regularisation dependence
of our scale-setting procedure, but also in the definition
of the lattice counterparts of Q and �.

Vacuum expectation values of operators O(Uµ) built of
link variables are formally defined as ensemble averages:

hOi ⌘

R
DUµe

�SWO(Uµ)
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, (14)

where DUµ ⌘
Q

x,µ dUµ(x), dUµ(x) being the Haar mea-
sure on Sp(2N), while

Z(�) ⌘

Z
DUµ e

�SW (15)

is the partition function of the system.
For a given value of � and L/a, ensembles are gener-

ated by a Markovian process that updates the values of
the link variables in a configuration. The update algo-
rithm must respect detailed balance and have equilibrium
distribution e

�SW . An update of all the links of the lat-
tice is called a lattice sweep. It is customary to repeat
the update process, subsequent configurations i and i+1
in the ensemble being separated by a fixed number Nsw

of sweeps. The ensemble average takes the simpler form

hOi = lim
M!1

MX

i=1

Oi , (16)

with Oi the observable O evaluated on configuration i.
The algorithm we adopt combines local heat bath (HB)
and over-relaxation (OR) updates, implemented in an
openly-available [80] adaptation of the HiRep code [81]
to Sp(2N) groups [15].

The discretised topological charge density can be de-
fined in several different ways [67, 82], that differ by terms

proportional to a power of a. For the body of this paper,
we use the clover-leaf discretisation,

qL(x) ⌘
1

32⇡2
✏
µ⌫⇢�Tr Cµ⌫(x)C⇢�(x) . (17)

Both clover-leaf and elementary plaquette definitions of
qL(x)—the latter obtained by replacing Cµ⌫(x) with Pµ⌫

in Eq. (17)—converge to q(x) in Eq. (5), as a ! 0. But
the clover-leaf definition treats all lattice directions sym-
metrically. The (lattice) topological charge is thus

QL =
X

x

qL(x) , (18)

and its susceptibility is

�L =
X

x

hqL(x)qL(0)i . (19)

Estimates of physical quantities obtained for given val-
ues of � and L/a are affected by several types of system-
atic errors. Finite size (or volume) effects arise when
probing the system over physical distances that are not
much smaller than L. This systematic error becomes
insignificant if an increase in L/a has an effect that is
smaller than statistical fluctuations. Studies of the topol-
ogy in SU(Nc) gauge theories show that finite size effects
are negligible provided

p
�L >

⇠ 3, where � is the string
tension—see, e.g., Figs. 3 and 4 of Ref. [66]. We use
earlier analysis of the Sp(Nc) spectrum [15] to identify
regions of parameter space satisfying this condition.

The evaluation of � via lattice methods is particularly
challenging, affected by specific systematic effects. First,
the configuration space of the lattice theory is simply
connected. Topological sectors, and discrete topological
charges, are recovered only in the vicinity of the contin-
uum limit [83], while QL is not integer, which affects �L.

Second, it is challenging to control the continuum ex-
trapolation. �L is particularly sensitive to discretisation



Topology on the lattice - Continued

Lattice topological charge density defined as

Technical points: 
• Ultraviolet fluctuations need to be tamed (e.g., using the Gradient 

Flow)
• A sensible prescription to project Q onto integers need to be used 
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The simplest such closed path on the lattice defines the
elementary plaquette Pµ⌫ :

Pµ⌫(x) ⌘ Uµ(x)U⌫(x + µ̂)U †
µ(x + ⌫̂)U †

⌫ (x) , (10)

and is used to define the Wilson action SW of the lattice
gauge theory (LGT):
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Another operator that is useful in lattice calculations
is the clover-leaf plaquette operator, defined as [78, 79]

Cµ⌫(x) ⌘
1

8

n
Uµ(x)U⌫(x + µ̂)U†

µ(x + ⌫̂)U †
⌫ (x) + U⌫(x)U†

µ(x + ⌫̂ � µ̂)U†
⌫ (x � µ̂)Uµ(x � µ̂) + (13)
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⌫ (x � ⌫̂ � µ̂)Uµ(x � ⌫̂ � µ̂)U⌫(x � ⌫̂) + U
†
⌫ (x � ⌫̂)Uµ(x � ⌫̂)Uµ(x � ⌫̂ + µ̂)U †

µ(x) � h.c.
o

.

This operator is used in the literature as a way to improve
the Yang-Mills lattice action, particularly in the presence
of fermions. In the context of this paper, it serves two
purposes: we use it to test the regularisation dependence
of our scale-setting procedure, but also in the definition
of the lattice counterparts of Q and �.

Vacuum expectation values of operators O(Uµ) built of
link variables are formally defined as ensemble averages:

hOi ⌘

R
DUµe

�SWO(Uµ)

Z(�)
, (14)

where DUµ ⌘
Q

x,µ dUµ(x), dUµ(x) being the Haar mea-
sure on Sp(2N), while

Z(�) ⌘

Z
DUµ e

�SW (15)

is the partition function of the system.
For a given value of � and L/a, ensembles are gener-

ated by a Markovian process that updates the values of
the link variables in a configuration. The update algo-
rithm must respect detailed balance and have equilibrium
distribution e

�SW . An update of all the links of the lat-
tice is called a lattice sweep. It is customary to repeat
the update process, subsequent configurations i and i+1
in the ensemble being separated by a fixed number Nsw

of sweeps. The ensemble average takes the simpler form

hOi = lim
M!1

MX

i=1

Oi , (16)

with Oi the observable O evaluated on configuration i.
The algorithm we adopt combines local heat bath (HB)
and over-relaxation (OR) updates, implemented in an
openly-available [80] adaptation of the HiRep code [81]
to Sp(2N) groups [15].

The discretised topological charge density can be de-
fined in several different ways [67, 82], that differ by terms

proportional to a power of a. For the body of this paper,
we use the clover-leaf discretisation,

qL(x) ⌘
1

32⇡2
✏
µ⌫⇢�Tr Cµ⌫(x)C⇢�(x) . (17)

Both clover-leaf and elementary plaquette definitions of
qL(x)—the latter obtained by replacing Cµ⌫(x) with Pµ⌫

in Eq. (17)—converge to q(x) in Eq. (5), as a ! 0. But
the clover-leaf definition treats all lattice directions sym-
metrically. The (lattice) topological charge is thus

QL =
X

x

qL(x) , (18)

and its susceptibility is

�L =
X

x

hqL(x)qL(0)i . (19)

Estimates of physical quantities obtained for given val-
ues of � and L/a are affected by several types of system-
atic errors. Finite size (or volume) effects arise when
probing the system over physical distances that are not
much smaller than L. This systematic error becomes
insignificant if an increase in L/a has an effect that is
smaller than statistical fluctuations. Studies of the topol-
ogy in SU(Nc) gauge theories show that finite size effects
are negligible provided

p
�L >

⇠ 3, where � is the string
tension—see, e.g., Figs. 3 and 4 of Ref. [66]. We use
earlier analysis of the Sp(Nc) spectrum [15] to identify
regions of parameter space satisfying this condition.

The evaluation of � via lattice methods is particularly
challenging, affected by specific systematic effects. First,
the configuration space of the lattice theory is simply
connected. Topological sectors, and discrete topological
charges, are recovered only in the vicinity of the contin-
uum limit [83], while QL is not integer, which affects �L.

Second, it is challenging to control the continuum ex-
trapolation. �L is particularly sensitive to discretisation



Computational challenges

• Χ proportional to quark masses            large statistics needed for 
accurate determination in the chiral limit (and sensitive to lattice 
artefacts due to fermion discretization)

• Q highly suppressed at high temperature            the computational cost 
gets significantly worse as they increase

• Finite size effects at high T (constant number of sites as β increases)

• Topological freezing towards the continuum limit


