Lattice QCD inputs for CKM matrix elements determinations

Elvira Gámiz

UNIVERSIDAD DE GRANADA

 \cdot Lattice Gauge Theory Contributions to New Physics Searches \cdot 12-16 June 2023 \cdot

Elvira Gámiz Lattice QCD inputs for CKM matrix elements determinations

Introduction

Precise tests of CKM unitarity and internal consistency within SM description. Indirect probe of NP.

Good consistency but some tensions: Cabbibo anomaly, $V_{cb(ub)} \mbox{ exc. vs inc., } \ldots$

Experimental program: LHCb, Belle II, BESIII, ATLAS/CMS, NA62, KLOE-2, PIONEER

Elvira Gámiz Lattice QCD inputs for CKM matrix elements determinations

Contents

 $\begin{array}{ccc} |V_{ud}| & |V_{us}| & |V_{ub}| \\ \pi \rightarrow \ell \nu & K \rightarrow \ell \nu & B \rightarrow \pi \ell \nu \end{array}$ nucleon charges $K \to \pi \ell \nu$ $B_s \to K \ell \nu$ $B \to \ell \nu$ RC Hyperon decays $\Lambda_b \to p\ell\nu$ $V_{CKM} = \begin{vmatrix} |V_{cd}| & |V_{cs}| & |V_{cb}| \\ D \to \ell\nu & D_s \to \ell\nu & B \to D^{(*)}\ell\nu \\ D \to \pi\ell\nu & D \to K\ell\nu & B_s \to D_s^{(*)}\ell\nu \\ A_c \to \Lambda\ell\nu & \Lambda_b \to \Lambda_c\ell\nu \\ B_c \to B^0\ell\nu \dots & B_c \to B_s^0\ell\nu \dots & B \to X_c\ell\nu \\ \end{vmatrix}$ $\begin{vmatrix} |V_{td}| & |V_{ts}| & |V_{tb}| \\ \Delta M_d & \Delta M_s \\ B \to \pi\ell\ell & B \to K\ell\ell \end{vmatrix}$

Radiative Corrections: Talk by Matteo Di Carlo

 $|V_{ub,cb}|$: Talk by Judd Harrison

-

HFLAV21, Phys. Rev. D 107 (2023) 5

FLAG21, Eur. Phys.J. C 82 (2022) 10, 869 [2023 web update]

Tests of first-row CKM unitarity

Elvira Gámiz Lattice QCD inputs for CKM matrix elements determinations

э

Reduction of errors in the last years thanks to physical light quark masses, improved actions, NPR or no renormalization.

Following W. Marciano proposal in PRL93, 231803 (2004), hep-ph/0402299

$$\frac{\Gamma(K^+ \to l^+ \nu_l(\gamma))}{\Gamma(\pi^+ \to l^+ \nu_l(\gamma))} \propto \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_{K^{\pm}}^2}{f_{\pi^{\pm}}^2} \frac{\left(1 + \delta_{EM,K}^l\right)}{\left(1 + \delta_{EM,\pi}^l\right)}$$

 δ^l_{EM} includes structure dependent EM corrections

イロト 不得 トイヨト イヨト 二日

Following W. Marciano proposal in PRL93, 231803 (2004), hep-ph/0402299

$$\frac{\Gamma(K^+ \to l^+ \nu_l(\gamma))}{\Gamma(\pi^+ \to l^+ \nu_l(\gamma))} \propto \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_{K^{\pm}}^2}{f_{\pi^{\pm}}^2} \frac{\left(1 + \delta_{EM,K}^l\right)}{\left(1 + \delta_{EM,\pi}^l\right)} \to \frac{|V_{us}|}{|V_{ud}|} \frac{f_{K^{\pm}}}{f_{\pi^{\pm}}} = 0.27599(29)(24)$$

 δ_{EM}^l includes structure dependent EM corrections, traditionally estimated phenomenologically within ChPT, Cirigliano & Neufeld PLB700 (2011) 7, Knecht et al EPJC12 (2000) 469

* Experimental data PDG 21

Following W. Marciano proposal in PRL93, 231803 (2004), hep-ph/0402299

$$\frac{\Gamma(K^+ \to l^+ \nu_l(\gamma))}{\Gamma(\pi^+ \to l^+ \nu_l(\gamma))} \propto \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_{K^{\pm}}^2}{f_{\pi^{\pm}}^2} \frac{\left(1 + \delta_{EM,K}^l\right)}{\left(1 + \delta_{EM,\pi}^l\right)} \to \frac{|V_{us}|}{|V_{ud}|} \frac{f_{K^{\pm}}}{f_{\pi^{\pm}}} = 0.27599(29)(24)$$

 δ_{EM}^l includes structure dependent EM corrections, traditionally estimated phenomenologically within ChPT, Cirigliano & Neufeld PLB700 (2011) 7, Knecht et al EPJC12 (2000) 469

* Experimental data PDG 21

*
$$N_f = 2 + 1 + 1$$
 FLAG21 average for ${f_{K^\pm}\over f_{\pi^\pm}}$:

$$\frac{|V_{us}|}{|V_{ud}|} = 0.23126(24)_{exp}(20)_{RC}(37)_{latt} = 0.23126(49)$$

Calculate leptonic decay rates including QCD and QED on the lattice $\ensuremath{\mathsf{See}}$ M. Di Carlo talk

• For $K_{\mu 2}/\pi_{\mu 2}$, EM and SIB effects $\delta_{SU(2)} + \delta_{EM}$ found to be very compatible with *ChPT* estimates: -1.26(14)% vs -1.12(21)%. But smaller errors. (Compatible result from RBC/UKQCD, P.Boyle et al. 2211.12865: -0.86 $\binom{+41}{-40}$ %) Carrasco et al. 1502.00257. Giusti et al 1711.06537. Di Carlo et al 1904.08731

$$\frac{|V_{us}|}{|V_{ud}|} \frac{f_K}{f_\pi} \bigg|_{Di\ Carlo\ et\ al}^{Moulson\ CKM21} = 0.27679(28)(20)$$

• Together with the $N_f = 2 + 1 + 1$ isospin-symmetric average $\frac{f_K}{f_\pi} = 1.1978(22)$

(Moulson CKM21 from LQCD $N_f = 2 + 1 + 1$ results except FNAL/MILC 14A):

$$\frac{|V_{us}|}{|V_{ud}|} = 0.23108(23)_{exp}(16)(42)_{latt} = 0.23108(51)$$

How to define isospin-symmetric quantities? $X = X^{iso} + \delta_{QED} + \delta_{SU(2)}$

Extraction of $|V_{us}|$ need external input for $|V_{ud}|$:

- Most precise determination from superallowed β decays.
 - * Recent updates of universal single-nucleon radiative corrections (focused on the γW -box diagrams): Seng et al 1812.03352, 1807.10197, 2003.11264, Czarnecki, Marciano & Sirlin 1907.06737, Hayen 2010.07262, Shiells, Blunden, Melnitchouk 2012.01580
 - ** Seng et al 2003.11264: Use LQCD result for π axial γW -box
 - ** Also relevant for neutron decay

 $\Delta_R^V = 0.02467(27) \text{ Cirigliano, Crivellin, Hoferichter, Moulson 2208.11707} \rightarrow \text{Shift central value}$

* New nuclear structure-dependent corrections Gorchtein 1812.04229, Seng et al 1812.03352 \rightarrow Increase the errors.

$$|V_{ud}|^{0^+ \to 0^+} = 0.97367(11)_{exp}(13)_{\Delta_V^R}(27)_{NS} = 0.97367(32)$$

Hardy&Towner 21+Cirigliano, Crivellin, Hoferichter, Moulson 2208.11707

Extraction of $|V_{us}|$ need external input for $|V_{ud}|$:

- Most precise determination from superallowed β decays.
 - * Recent updates of universal single-nucleon radiative corrections (focused on the γW -box diagrams): Seng et al 1812.03352, 1807.10197, 2003.11264, Czarnecki, Marciano & Sirlin 1907.06737, Hayen 2010.07262, Shiells, Blunden, Melnitchouk 2012.01580
 - ****** Seng et al 2003.11264: Use LQCD result for π axial γW -box
 - ** Also relevant for neutron decay

 $\Delta_R^V = 0.02467(27) \text{ Cirigliano, Crivellin, Hoferichter, Moulson 2208.11707} \rightarrow \text{Shift central value}$

 * New nuclear structure-dependent corrections Gorchtein 1812.04229, Seng et al 1812.03352 → Increase the errors.

$$|V_{ud}|^{0^+ \to 0^+} = 0.97367(11)_{exp}(13)_{\Delta_V^R}(27)_{NS} = 0.97367(32)$$

Hardy&Towner 21+Cirigliano, Crivellin, Hoferichter, Moulson 2208.11707

• Neutron decays: Clean system, large exp. errors. From PDG21

$$|V_{ud}|_{n}^{\text{PDG}} = 0.97441(31)_{f}(13)_{\Delta R}(82)_{\lambda}(28)_{\tau_{n}} = 0.97441(88)$$

where f = phase-space factor, $\lambda = g_A/g_V$, $\tau_n =$ neutron lifetime.

Extraction of $|V_{us}|$ need external input for $|V_{ud}|$:

- Most precise determination from superallowed β decays.
 - * Recent updates of universal single-nucleon radiative corrections (focused on the γW -box diagrams): Seng et al 1812.03352, 1807.10197, 2003.11264, Czarnecki, Marciano & Sirlin 1907.06737, Hayen 2010.07262, Shiells, Blunden, Melnitchouk 2012.01580
 - ****** Seng et al 2003.11264: Use LQCD result for π axial γW -box
 - ** Also relevant for neutron decay

 $\Delta_{R}^{V}=0.02467(27)$ Cirigliano, Crivellin, Hoferichter, Moulson 2208.11707 \rightarrow Shift central value

 New nuclear structure-dependent corrections Gorchtein 1812.04229, Seng et al 1812.03352 → Increase the errors.

$$|V_{ud}|^{0^+ \to 0^+} 0.97367(11)_{exp}(13)_{\Delta_V^R}(27)_{NS} = 0.97367(32)$$

Hardy&Towner 21+Cirigliano, Crivellin, Hoferichter, Moulson 2208.11707

Neutron decays: New EFT evaluation of RC Cirigliano et al 2306.03138

 $|V_{ud}|_{n,\text{PDG}}^{\text{Cirigliano et al}} = 0.97430(2)_{\tilde{\Delta}f}(13)_{\tilde{\Delta}R}(82)_{\lambda}(28)_{\tau_n} = 0.97430(88)$

where f =phase-space factor, $\lambda = g_A/g_V$, τ_n =neutron lifetime.

Extraction of $|V_{us}|$ need external input for $|V_{ud}|$:

• Pion β decay $\pi^{\pm} \rightarrow \pi^0 e^{\pm} \nu_e$: Experimental errors still large (PIONEER can improve)

 $|V_{ud}|^{\pi} = 0.9739(29)$

Experimental average from PDG21 and $N_f = 2 + 1 + 1$ FLAG21 average for $\frac{f_{K^{\pm}}}{f_{-+}}$:

$$\frac{|V_{us}|}{|V_{ud}|} = 0.23126(24)_{exp}(20)_{RC}(37)_{latt} = 0.23126(49)$$

plus V_{ud} from superallowed β decays

1 T 7

$$|V_{ud}|^{0^+ \to 0^+} = 0.97367(11)_{exp}(13)_{\Delta_V^R}(27)_{NS} = 0.97367(32)$$

give

$$|V_{us}|^{K_{\ell 2}/\pi_{\ell 2}} = 0.22517(24)_{exp}(36)_{latt}(24)_{RC}(6)_{NS} = 0.22517(48)$$

* Error dominated by uncertainty in the ratio V_{us}/V_{ud} .

イロト 不得 トイヨト イヨト 二日

Leptonic decays of light mesons: $f_{\pi^{\pm}}$ and $f_{K^{\pm}}$

 $f_{K^{\pm}}^{N_f=2+1+1} = 155.7(3)$ 0.19% error

But many existing LQCD calculations use f_{π} to set the lattice scale (implicitly rely on $|V_{ud}|$ and the SM).

 \rightarrow use a different external input?

Leptonic decays of light mesons: $f_{\pi^{\pm}}$ and $f_{K^{\pm}}$

 $f_{K^{\pm}}^{N_f=2+1+1} = 155.7(3)$ 0.19% error

But many existing LQCD calculations use f_{π} to set the lattice scale (implicitly rely on $|V_{ud}|$ and the SM).

 \rightarrow use a different external input?

▲ロト ▲御 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Without relying on f_{π} to set the scale:

* With $f_{K^{\pm}}^{FLAG21,2+1} = 155.7(7)$ MeV and $|V_{us}f_{K^{\pm}}|^{PDG21} = 35.09(4)_{exp}(4)_{RC}$ MeV

 $|V_{us}| = 0.2254(10)_{latt}(3)_{exp}(3)_{RC}$

* With $|V_{us}f_K| = 35.23(4)_{exp}(2)_{RC}$ MeV Di Carlo et al 1904.08731, $f_K^{2+1} = 156.0(7)$ MeV

$$|V_{us}| = 0.2258(10)_{latt}(3)_{exp}(1)_{RC}$$

 $f_{+}(0)_{N_f=2+1+1}^{FLAG21} = 0.9698(17)$

0.18% error

$$\Gamma_{K_{l3(\gamma)}} \propto |V_{us}|^2 |f_+^{K^0 \pi^-}(0)|^2 \eta_{EW}^2 \left(1 + \delta_{\rm EM}^{Kl} + \delta_{\rm SU(2)}^{K\pi}\right)$$

 $\eta_{EW} = 1.0232(3)$ Universal SD EW correction. δ_{EM}^{Kl} includes structure-dependent EM corrections and the SIB $\delta_{SU(2)}^{K\pi}$ is defined as a correction with respect to the K^0 decay. Traditionally estimated phenomenologically within ChPT, Cirigliano et al 1107.6001

$$\Gamma_{K_{l3(\gamma)}} \propto |V_{us}|^2 |f_+^{K^0 \pi^-}(0)|^2 \eta_{EW}^2 \left(1 + \delta_{\rm EM}^{Kl} + \delta_{\rm SU(2)}^{K\pi}\right)$$

 $\delta_{SU(2)}$ looks solid at current level of precision, ChPT estimate for δ_{EM} into question (plus relevant source of error)

$$\Gamma_{K_{l3(\gamma)}} \propto |V_{us}|^2 |f_+^{K^0 \pi^-}(0)|^2 \eta_{EW}^2 \left(1 + \delta_{\rm EM}^{Kl} + \delta_{\rm SU(2)}^{K\pi}\right)$$

 $\delta_{SU(2)}$ looks solid at current level of precision, ChPT estimate for δ_{EM} into question (plus relevant source of error)

- * Calculation of $\delta_{EM}^{Ke(\mu)}$ based on Sirlin's representation of RC Seng et al 1910.13208, 2009.00459, 2103.00975, 2103.04843, 2203.05217, ChPT and new lattice QCD inputs for $\gamma W - box$ diagrams Ma et al 2102.12048
 - ** Consistent with previous ChPT estimates but with smaller errors.
 - ** New results for π and K box diagrams in Yoo et al 2305.03198

$$\Gamma_{K_{l3(\gamma)}} \propto |V_{us}|^2 |f_+^{K^0 \pi^-}(0)|^2 \eta_{EW}^2 \left(1 + \delta_{\rm EM}^{Kl} + \delta_{\rm SU(2)}^{K\pi}\right)$$

 $\delta_{SU(2)}$ looks solid at current level of precision, ChPT estimate for δ_{EM} into question (plus relevant source of error)

- * Calculation of $\delta_{EM}^{Ke(\mu)}$ based on Sirlin's representation of RC Seng et al 1910.13208, 2009.00459, 2103.00975, 2103.04843, 2203.05217, ChPT and new lattice QCD inputs for $\gamma W - box$ diagrams Ma et al 2102.12048
 - ** Consistent with previous ChPT estimates but with smaller errors.
 - ** New results for π and K box diagrams in Yoo et al 2305.03198

Using experimental average in Cirigliano et al, 2208.11707 (includes new RC above)

$$|f_+(0)V_{us}| = 0.21656(35)_{\exp+\mathrm{IB}}$$

* New KLOE-2 result D. Babusci et al, 2208.04872 ($K_S \rightarrow \pi e \nu$)

And $N_f = 2 + 1 + 1$ FLAG21 average for $f_+(0) = 0.9698(17)$

 $|V_{us}|^{\text{semil}} = 0.22330(35)_{exp}(39)_{latt}(8)_{IB} = 0.22330(53)$

Other determinations of $|V_{us}/V_{ud}|$ and $|V_{us}|$

*
$$\frac{\Gamma(K \to \pi \ell \nu(\gamma))}{\Gamma(\pi^+ \to \pi^0 e^+ \nu(\gamma))} \propto \left| \frac{V_{us}}{V_{ud}} \right|^2 \left| \frac{f_+^{K\pi}(0)}{f_+^{\pi^+\pi^0}(0)} \right|^2 \text{ proposed by Czarnecki, Marciano,}$$
Sirlin, 1911,04685

With $f_{+}^{K\pi}(0) = 0.9698(17)$, $f_{+}^{\pi^+\pi^0}(0) \approx 1$ and including new RC for K_{e3} and π_{e3} Feng et al 2003.09798, Ma et al 2102.12048, Seng et al 2103.00975, 2107.14708

$$\left. \frac{V_{us}}{V_{ud}} \right|_{K_{\ell 3}/\pi_{\ell 3}} = 0.22908(66)_{exp,\pi}(41)_K(40)_{f^K_+(0)}(2)_{\tau^+_{\pi}}(1)_{RC\pi} = 0.22908(88)$$

Other determinations of $|V_{us}/V_{ud}|$ and $|V_{us}|$

*
$$\frac{\Gamma(K \to \pi \ell \nu(\gamma))}{\Gamma(\pi^+ \to \pi^0 e^+ \nu(\gamma))} \propto \left| \frac{V_{us}}{V_{ud}} \right|^2 \left| \frac{f_+^{K\pi}(0)}{f_+^{\pi^+\pi^0}(0)} \right|^2 \text{ proposed by Czarnecki, Marciano,}$$

With $f_{+}^{K\pi}(0) = 0.9698(17)$, $f_{+}^{\pi^+\pi^0}(0) \approx 1$ and including new RC for K_{e3} and π_{e3} Feng et al 2003.09798, Ma et al 2102.12048, Seng et al 2103.00975, 2107.14708

$$\left. \frac{V_{us}}{V_{ud}} \right|_{K_{\ell 3}/\pi_{\ell 3}} = 0.22908(66)_{exp,\pi} (41)_K (40)_{f^K_+(0)} (2)_{\tau^+_{\pi}} (1)_{RC\pi} = 0.22908(88)$$

- * Inclusive hadronic τ decays: D > 4 condensates from the lattice Hudspith et al 1702.01767, replacing OPE expansion by lattice HVP functions and optimizing weight functions RBC/UKQCD Boyle et al 1803.07228. Updates T. Izubuchi talk at CKM18 and K. Maltman talk at TAU18
 - ** ETMC: New method based on reconstruction of smeared spectral densities from Euclidean lattice correlators: talk by A. Evangelista at Lattice22, 2301.00796
- * Hyperon decays: $|V_{us}|_{PDG\,22}^{hyp} = 0.2250(27)$
 - ** Preliminary work by RBC/UKQCD on the calculation of form factors for $\Sigma^- \rightarrow n \ell^- \bar{\nu}$ presented at Lattice21, talk by R. Hodgson.

・ コ ト ・ 雪 ト ・ 雪 ト ・ ヨ ト

First-row: Consistency CKM description

Circles: Use $|V_{ud}|^{0^+ \to 0^+} = 0.97367(32)$ to get $|V_{us}|$.

 $(au o K \ell
u)/(au o \pi \ell
u)$ HFLAV21 includes new RC calculation by Arroyo-Ureña et al 2107.04603

- Internal tensions between leptonic and semileptonic determinations of $|V_{us}|$ (with $|V_{ud}|$ as external input): $\sim 3\sigma$

イロト 不得 トイヨト イヨト 二日

First-row: Consistency CKM description

・ 「 ト ・ 三 ト ・

Tests of first-row CKM unitarity

Tensions with first-row unitarity at $\sim 2-3\sigma$ level

- $\Delta_{u} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 1$
- * V_{us}^{semil} and $|V_{us}^{0^+ \rightarrow 0^+}|$ $\Delta_u = -0.0021(2)_{Vus}(6)_{Vus}$ $\sim 3\sigma$
- * V_{us}^{semil} and $|V_{us}|/|V_{ud}|^{K_{\ell 2}/\pi_{\ell 2}}$ $\Delta_u = -0.018(5)_{V_{us}}(4)_{V_{us}/V_{ud}} \sim 3\sigma^{\dagger}$ Correlated analysis: Theory and experiment $(|K_{\mu3}/K_{\mu2}|_{exp}$ could have large impact Cirigliano, Crivellin, Hoferichter, Moulson, 2208.11707)

*
$$|V_{ud}^{0^+ \to 0^+}|$$
 and $|V_{us}|/|V_{ud}|^{K_{\ell_2}/\pi_{\ell_2}}$
 $\Delta_u = -0.0013(7)_{V_{ud}}(2)_{V_{us}/V_{ud}} \sim 2\sigma$

[†] ~ 2.5 σ with $|V_{us}|/|V_{ud}|^{K_{\ell_2}/\pi_{\ell_2}}|^{Moulson \ CKM21}_{Di \ Carlo \ st \ al} = 0.23108(51)$ ・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

> Elvira Gámiz Lattice QCD inputs for CKM matrix elements determinations

Tests of second-row CKM unitarity

Elvira Gámiz Lattice QCD inputs for CKM matrix elements determinations

<ロ> <部> <部> <き> <き><

э

Leptonic decays of D and D_s mesons

Errors at 0.33-0.20%, 0.14% for the ratio: physical light quark masses, improved actions, NPR or no renormalization + small lattice spacings + same action for all flavors

* On-going work on $N_f = 2 + 1$ CLS ensembles, see A.Conigli talk at Lattice 22

Leptonic decays of D and D_s mesons

Errors at 0.33-0.20%, 0.14% for the ratio: physical light quark masses, improved actions, NPR or no renormalization + small lattice spacings + same action for all flavors

FLAG21 $N_f = 2 + 1 + 1$ averages:

 $f_D = 212.0(0.7) \text{ MeV}$ $f_{D_s} = 249.9(0.5) \text{ MeV}$ $f_{D_s}/f_D = 1.1783(0.0016)$

With dominant SIB from FNAL/MILC 1712.09262:

 $f_{D^+} = 212.6(0.7) \text{ MeV} f_{D_s} = 249.9(0.5) \text{ MeV} f_{D_s}/f_{D^+} = 1.1751(16)$

Leptonic D decays: Extraction of $V_{cd(cs)}$

$$\Gamma(D_{(s)}^+ \to \ell^+ \nu(\gamma)) \propto \eta_{EW}^2 \left(1 + \delta_{\rm EM}\right) |V_{cd(cs)}|^2 f_{D_{(s)}^+}^2$$

Experimental data: CLEO-c, Belle, Babar, and BESIII. HFLAV21 averages

 $\eta_{EW}|V_{cd}|f_{D^+} = 46.2(1.1) \text{ MeV}$ $\eta_{EW}|V_{cs}|f_{D_s^+} = 245.4(2.4) \text{ MeV}$

(averages do not include recent **BESIII** results for $D_s \rightarrow \tau \nu$, 2303.22600, 2303.12468)

イロト 不得 トイヨト イヨト 二日

Leptonic *D* decays: Extraction of $|V_{cd(cs)}|$

$$\Gamma(D_{(s)}^+ \to \ell^+ \nu(\gamma)) \propto \eta_{EW}^2 \left(1 + \delta_{\rm EM}\right) |V_{cd(cs)}|^2 f_{D_{(s)}^+}^2$$

Experimental data: CLEO-c, Belle, Babar, and BESIII. HFLAV21 averages

 $|V_{cd}|f_{D^+} = 45.8(1.1)(0.3) \text{ MeV}$ $|V_{cs}|f_{D^+} = 243.2(2.4)(1.7) \text{ MeV}$

(averages do not include recent **BESIII** results for $D_s \rightarrow \tau \nu$, 2303.22600, 2303.12468)

- EW and EM corrections: Accounted for in the exp. rates. PDG21 adds 1.4% uncertainty to purely leptonic decay rate. Adding that to HFLAV21 averages:
 - * Short-distance EW corrections ~1.8% Sirlin NP82
 - * Structure-dependent EM: Reduce ${\sim}1\%~\mu$ channels Dobrescu, Kronfeld 0803.0512
 - * Long-distance EM: removed with PHOTOS.

Together with $N_f = 2 + 1 + 1$ FLAG21 averages (with dominant SIB corrections):

 $|V_{cd}| = 0.2154(52)_{exp}(14)(7)_{latt}$

 $|V_{cs}| = 0.973(10)_{exp}(7)(2)_{latt}$

* EW+EM corrections important source of error. First results for radiative decay rates on the lattice: Desiderio et al 2006.05358, Giusti, Kane, Lehner, Meinel, Soni 2302.01298

Semileptonic D decays: Extraction of $|V_{cd(cs)}|$

$$\frac{d\Gamma(D \to P\ell\nu)}{dq^2} \propto \eta_{EW}^2 (1 + \delta_{\rm EM}) |V_{cd(cs)}|^2 \times \left[|f_+^{DP}(q^2)|^2 + h(q^2, M_P^2, M_D^2, m_\ell) |f_0^{DP}(q^2)|^2 \right]$$

(with $h((q^2, M_P^2, M_D^2, 0) = 0)$

* Neglecting contribution from $|f_0^{DP}(q^2)|^2$ in $D \to P\mu\nu$ could shift $V_{cd,cs}$ by a few percent Bazavov et al 2212.12648.

Experimental data: CLEO-c, Belle, Babar, and BESIII. 2-3% errors for total branching fractions (μ and e)

Semileptonic D decays: Extraction of $|V_{cd(cs)}|$

$$\frac{d\Gamma(D \to P\ell\nu)}{dq^2} \propto \eta_{EW}^2 (1 + \delta_{\rm EM}) |V_{cd(cs)}|^2 \times \left[|f_+^{DP}(q^2)|^2 + h(q^2, M_P^2, M_D^2, m_\ell) |f_0^{DP}(q^2)|^2 \right]$$

(with $h((q^2, M_P^2, M_D^2, 0) = 0)$

* Neglecting contribution from $|f_0^{DP}(q^2)|^2$ in $D \to P\mu\nu$ could shift $V_{cd,cs}$ by a few percent Bazavov et al 2212.12648.

Experimental data: CLEO-c, Belle, Babar, and BESIII. 2-3% errors for total branching fractions (μ and e)

EW and EM corrections: Should be accounted for in exp. rates.

- * Short-distance EW corrections ${\sim}1.8\%$ Sirlin NP82
- * Structure-dependent EM: use RC $K_{\ell 3}$ calculations to estimate uncertainty $\sim 1\% (V_{cd,cs})$, $\sim 0.5\% (V_{cd}/V_{cs}$, LFU ratios).
- * Long-distance EM: removed with PHOTOS.

Semileptonic D decays: Extraction of $|V_{cd(cs)}|$

$$\frac{d\Gamma(D \to P\ell\nu)}{dq^2} \propto \eta_{EW}^2 (1 + \delta_{\rm EM}) |V_{cd(cs)}|^2 \times \left[|f_+^{DP}(q^2)|^2 + h(q^2, M_P^2, M_D^2, m_\ell)| f_0^{DP}(q^2)|^2 \right]$$

(with $h((q^2, M_P^2, M_D^2, 0) = 0)$

* Neglecting contribution from $|f_0^{DP}(q^2)|^2$ in $D \to P\mu\nu$ could shift $V_{cd,cs}$ by a few percent Bazavov et al 2212.12648.

Theoretically: New $N_f = 2 + 1 + 1$ results in the last couple of years \rightarrow form factors errors reduced to $\sim 0.5 - 1\%$ (at $q^2 = 0$)

* $D \to K\ell\nu$: f_0, f_+ HPQCD 2104.09883 * $D \to K$: f_0, f_+, f_T HPQCD 2207.12468 * $D_{(s)} \to K\ell\nu, D \to \pi\ell\nu$: f_0, f_+ FNAL/MILC 2212.12648

Semileptonic *D* decays: HPQCD

HPQCD 2104.09883 $D \rightarrow K \ell \nu$ form factors on $N_f = 2 + 1 + 1$ MILC HISQ ensembles.

- Relativistic (HISQ) description of all flavors: very small discretization errors
- * 5 lattice spacings $a \approx 0.15 0.042$ fm. m_s and m_c close to physical, 3 ensembles with physical m_l .
- * NPR imposing Ward identities at q^2_{max} $(M_D - M_K)Z_V \langle K|V^0|D \rangle_{q^2_{max}} =$ $(m_c - m_s) \langle K|S|D \rangle_{q^2_{max}}$
- * Modified z-expansion: chiral interpolation, mass mistunings, continuum extrapol. and q^2 dependence.
- * tbc: Four momenta for each ensemble

Semileptonic *D* decays: HPQCD

HPQCD 2104.09883 $D \rightarrow K \ell \nu$ form factors on $N_f = 2 + 1 + 1$ MILC HISQ ensembles.

- Relativistic (HISQ) description of all flavors: very small discretization errors
- * 5 lattice spacings $a \approx 0.15 0.042$ fm. m_s and m_c close to physical, 3 ensembles with physical m_l .
- * NPR imposing Ward identities at q_{max}^2 $(M_D - M_K)Z_V \langle K|V^0|D \rangle_{q_{max}^2} =$ $(m_c - m_s) \langle K|S|D \rangle_{q_{max}^2}$
- * Modified z-expansion: chiral interpolation, mass mistunings, continuum extrapol. and q^2 dependence.
- * tbc: Four momenta for each ensemble

Three methods to extract $V_{cs}\colon$ differ in experimental data included

- * Total branching fraction.
- * $f_{+}^{DK}(0)$
- * q^2 binned differential decay rates.

Semileptonic *D* decays: HPQCD

HPQCD 2207.12468 $D(B) \rightarrow K$ on $N_f = 2 + 1 + 1$ MILC HISQ ensembles.

- * Same data as HPQCD 2021.
- * Includes $f_T(q^2)$
- * Reanalysis include: Tensor-current correlators (combined correlator fits), heavier-than-charm data and $D_s \rightarrow \eta_s$ data.
- * Results for $f_{0,+}(q^2)$ within 1σ of 2021 results.

Plot from HPQCD 2207.12468

ETMC'18: $N_f = 2 + 1 + 1$ twisted mass, Lubicz et al 1803.04807

FNAL/MILC 2212.12648 $D \to K(\pi)\ell\nu$, $D_s \to K\ell\nu$ blinded analysis on $N_f = 2 + 1 + 1$ MILC HISQ ensembles.

- * Relativistic (HISQ) description of all flavors: small discretization errors
- * 4 lattice spacings $a \approx 0.12 0.042$ fm.

 m_s close to physical, several $m_h \sim 0.9 m_c - 2.2 m_c$, 3 ensembles with physical m_l .

* NPR imposing Ward identities at all simulated q^2

physical quark masses $0.12\ {\rm fm}$ ensemble

- * Chiral interpolation + continuum extrapolation: hard pion/kaon (staggered) SU(2) ChPT for f_0 ($\langle S \rangle$) and f_+ ($\langle S \rangle$ and $\langle V^i \rangle$).
- * (BCL) z-expansion
- * Momenta (pbc): 8 for each ensemble $p = 2\pi n/N_s a$

Semileptonic D **decays:** $D_{(s)} \rightarrow K(\pi) \ell \nu$

Elvira Gámiz Lattice QCD inputs for CKM matrix elements determinations

Three methods to extract $|V_{cd,cs}|$: Joint experimental+LQCD z-expansion fit, $f_+^{DK}(0)$, q^2 binned differential decay rates.

 $|V_{cs}|^{D \to K} = 0.9589(23)_{exp}(40)_{latt}(15)_{EW}(05)_{SIB}[95]_{QED}$

Statistics is the dominant error in the LQCD FF calculation for all three channels.

Three methods to extract $|V_{cd,cs}|$: Joint experimental+LQCD z-expansion fit, $f_+^{DK}(0)$, q^2 binned differential decay rates.

 $|V_{cd}|^{D \to \pi} = 0.2238(11)_{exp}(15)_{latt}(04)_{EW}(02)_{SIB}[22]_{QED}$

Elvira Gámiz Lattice QCD inputs for CKM matrix elements determinations

Three methods to extract $|V_{cd,cs}|$: Joint experimental+LQCD z-expansion fit, $f_+^{DK}(0)$, q^2 binned differential decay rates.

 $|V_{cd}|^{D \to \pi} = 0.2238(11)_{exp}(15)_{latt}(04)_{EW}(02)_{SIB}[22]_{QED}$

Alternative ways of extracting $|V_{cd(cs)}|$

- In progress $D_{(s)} \rightarrow \pi(K)$: RBC/UKQCD M. Marshall at Lattice2022 (2201.02680), ALPHA/CLS J. Frison at Lattice2022 (PoS (LATTICE2022) 408)
- $\Lambda_c \rightarrow \Lambda \ell^+ \nu_\ell$: $N_f = 2 + 1$ form factors calculated by Meinel 1611.09696. Combined with **new BESIII** 2306.02624:

$$|V_{cs}| = 0.937(24)_{latt}(7)_{\tau_{\Lambda_c}}(14)_{\mathcal{B}}$$

Need to reduce LQCD error.

- $B_c \rightarrow B^0_{(s)}$ HPQCD 2003.00914 $N_f = 2 + 1 + 1$ calculation of form factors over complete phys. q^2 range. Measurable at LHCb.
- $\Xi_c \rightarrow \Xi \ell^+ \nu_{\ell}$: First calculation of form factors with LQCD Q.A. Zhang et at 2103.07064 gives $|V_{cs}| = 0.834(74)_{latt}(127)_{exp}$ together with Belle 2103.06496 data

 $|V_{cs}| = 0.883(88)_{latt}(167)_{exp}$ together with ALICE, J. Zhu, PoS ICHEP2020 (2021) 524

イロト 不得 トイヨト イヨト 二日

Second row unitarity

- * Large improvement in semileptonic $|V_{cs,cd}|$, but large QED uncertainties.
- * Overall good consistency.

Second row unitarity

Second row unitarity is fulfilled within $\sim 1\sigma$.

- * dotted line: Unitarity with $|V_{cb}|^{inc.+exc.}_{PDG21} = (40.8 \pm 1.4)10^{-3}$
- * Inner blue ellipse: No QED errors.

$$\Delta_c = |V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 - 1$$

イロト イポト イヨト イヨト

For example, using correlated semileptonic results in FNAL/MILC 2212.12648:

$$\Delta_c = -0.0286(44)_{exp}(78)_{latt}(28)_{EW}[194]_{QED} = -0.029(22)$$

First and second row: consistency checks

Semileptonic FNAL/MILC 22 Leptonic FLAG21 + HFLAV21 Leptonic FNAL/MILC18 + HFLAV21 $K_{\ell 3}/\Gamma_{\ell 3}$ $K_{\ell 3}/V_{ud}^{0^+ -0^+}$ $K_{\ell 2}/\pi_{\ell 2}$ CKM Unitarity Global Fit (PDG21) $(\tau \rightarrow K \ell \nu)/(\tau \rightarrow \pi \ell \nu)$

* Agreement-tension between leptonic and semileptonic determination at the 2σ level.

(Results for $|V_{us}/V_{ud}|$ are translated to $|V_{cd}/V_{cs}|$ assuming unitarity and correcting up to $\mathcal{O}(\lambda^4)$ using parameters from a global unitarity fit (PDG21).)

First and second row: First-column unitarity

Grey lines: $|V_{cd}|_{K\ell 3}$, $|V_{cs}|_{V^{0+}_{ud} \to 0^+}$ (assumming unitarity and including corrections at $\mathcal{O}(\lambda^4)$) $\Delta_d \equiv |V_{ud}|^2 + |V_{cd}|^2 + |V_{td}|^2 - 1$

* Using Hardy&Towner 21 and Cirigliano et al 2208.11707

 $V_{ud}^{0^+\to0^+}=0.97367(32),$ and $V_{td}=8.67(23)\cdot10^{-3}$ from a global unitarity fit PDG21

and $|V_{cd}|$ from leptonic decays

$$\Delta_d = -0.0054(6)_{V_{ud}}(23)_{V_{cd}}(0)_{V_{td}}$$

= 0.0054(24)

or $|V_{cd}|$ from semileptonic decays FNAL/MILC22

 $\Delta_d = -0.00018(6)_{V_{ud}}(13)_{V_{cd}}(0)_{V_{cb}}$ = -0.0018(14)

 $\begin{array}{l} \mbox{Dominant error:} \quad V_{cd}^{\rm semil.} \quad \mbox{QED}, \\ V_{cd}^{\rm lep.} \quad \mbox{experimental (to be improved by Belle II,} \\ \mbox{BESIII to } \sim 1.1\% \quad \mbox{BESIII 2204.08943}). \end{array}$

イロト 不得 トイヨト イヨト 二日

Third row: Consistency tests

Elvira Gámiz Lattice QCD inputs for CKM matrix elements determinations

<ロ> <部> <部> <き> <き>

э

B-meson mixing: $|V_{td(ts)}|$

In the Standard Model and beyond, short-distance contributions to the mixing can be described via a $\mathcal{H}_{eff}^{\Delta F=2}$.

In general:
$$\mathcal{H}_{eff}^{\Delta F=2} = \sum_{i=1}^{5} C_i \mathcal{O}_i + \sum_{i=1}^{3} \widetilde{C}_i \widetilde{\mathcal{O}}_i$$

SM:

BSM:

 Recent and on-going lattice calculations of K, D, and B mixing matrix elements for all five operators → constraints on BSM physics

$B-\bar{B}$ mixing

For the mass differences, in the Standard Model

$$\begin{split} \Delta M_q \propto \left| V_{tq}^* V_{tb} \right|^2 f_{B_q}^2 \hat{B}_{B_q}^{(1)}, \text{ where } \frac{8}{3} f_{B_q}^2 B_{B_q}^{(1)}(\mu) M_{B_q}^2 = \langle \bar{B}^0 | \mathcal{O}_1^q | B^0 \rangle(\mu) \\ \text{and the } SU(3)\text{-breaking ratio } \xi = \sqrt{\frac{f_{B_s}^2 \hat{B}_{B_s}^{(1)}}{f_{B_d}^2 \hat{B}_{B_d}^{(1)}}} \propto \frac{\Delta M_s}{\Delta M_d} \frac{|V_{td}|^2}{|V_{ts}|^2} \end{split}$$

Elvira Gámiz

Lattice QCD inputs for CKM matrix elements determinations

$B-\bar{B}$ mixing

* Work in progress: RBC/UKQCD + JLQCD, F. Erben talk at Flavour@TH 2023, CERN, 8-12 May 2023 Both matrix elements and ratios with DWF and NPR.

Room for improvement in lattice calculations: statistics, matching, heavy quarks (relativistic and with a contolled extrapolation to m_b), ...

* 1% error for the bag parameters achievable in the next few years.

・ロト ・雪 ト ・ ヨ ト ・

B- mixing: $V_{td,ts}$

Full/tree CKM unitarity from PDG22 using all inputs/only tree-level observables.

- * B-mixing results dominated by LQCD errors: HPQCD 1907.01025, RBC/UKQCD 1812.08791, FNAL/MILC, 1602.03560
- * $B \rightarrow K(\pi)\mu^+\mu^-$ results from FNAL/MILC, D. Du et al, 1509.06235,1510.02349
 - ** New experimental data available from BaBar, Belle, and LHCb
 - ** New HPQCD 2207.13371: $B \to K$ form factors with fully relativistic description. Imply very low values of $|V_{ts}|$. J. Harrison talk

Conclusions and outlook

Quantity	error(%)	Latt. improvement	Experiments
$ V_{ud} $	-	RC, f_{π} , nucleon charges	
$ V_{us} _{sem}$	$0.18{\pm}0.16{\pm}0.04$	correlated analyses,	NA62,
$ V_{us} _{lep}$	$0.4{\pm}0.13{\pm}0.04$	f_K (without f_π),	KLOE-2
$\left V_{us}/V_{ud}\right $	$\sim 0.2{\pm}0.1{\pm}0.1$	QCD+QED	
$ V_{us} _{\tau}$		inclus. hadronic decays	Belle II
$ V_{cd} _{lep}$	$0.3\pm2.4\pm0.7$	FF calculations	BESIII,
$ V_{cd} _{sem}$	$0.7\pm0.5\pm1.0$	with other formulations,	Belle II
$ V_{cs} _{lep}$	$0.2\pm1.0\pm0.7$	QCD+QED	
$ V_{cs} _{sem}$	$0.4\pm0.25\pm1.0$		
$ V_{cs} _{\Lambda_c}$	2.6 ± 1.7	improve FF calculations	BESIII
$ V_{td} _{B-mix}$	$2.5 \pm 0.25 \pm 1?$	Reduce error in	LHCb, Belle II
$ V_{ts} _{B-mix}$	$2.1 \pm 0.0 \pm 1?$	bag parameters	

Error: LQCD \pm Exper. \pm IB/RC/EW

э