

Lattice Gauge Theory Contributions to New Physics Searches

Review of Heavy-Quark Flavour Physics

Judd Harrison
University of Glasgow

Outline of the Talk

I will mostly focus on b decays:

- Lattice methods for simulating b quarks
- $b \to c\ell\bar{\nu}: B_q \to D_q^{(*)}\ell\nu$, $R\left(D_{(s)}^{(*)}\right)$, A_{FB}
- $b \to s\ell^+\ell^-: B \to K^{(*)}, R(K^{(*)}), P'_5, B_s \to \phi\ell^+\ell^-$
- $b \rightarrow u/d: B \rightarrow \pi, B_S \rightarrow K$

Outline of the Talk

Disclaimer: This talk will contain my own opinions!

I will mostly focus on b decays:

- Lattice methods for simulating b quarks
- $b \to c\ell\bar{\nu}: B_q \to D_q^{(*)}\ell\nu$, $R\left(D_{(s)}^{(*)}\right)$, A_{FB}
- $b \to s\ell^+\ell^-: B \to K^{(*)}, R(K^{(*)}), P'_5, B_s \to \phi\ell^+\ell^-$
- $b \rightarrow u/d: B \rightarrow \pi, B_S \rightarrow K$

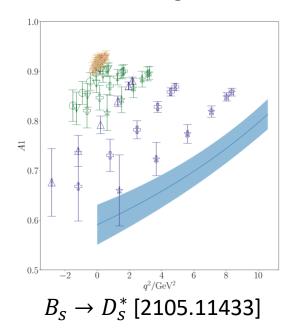
Relativistic **b** decays on the lattice

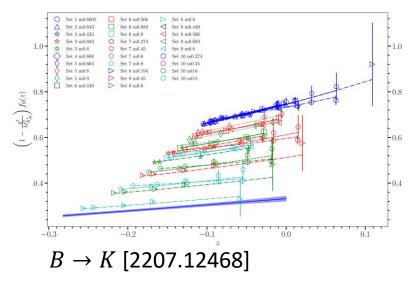
Several recent and currently ongoing lattice calculations of hadronic matrix elements using relativistic b quarks, e.g.

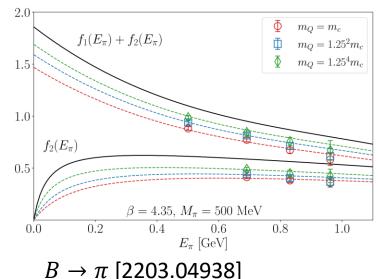
 B_c -meson decays [2003.00914, 2007.06957, 2108.11242], B_s -meson decays [1906.00701, 2105.11433], B-meson decays [2203.04938, 2207.12468, 2301.09229, 2304.03137]

Common approach:

- Perform lattice calculation at multiple b quark masses at and below m_b , using the same action for all quarks
- fit results using HQET-like form to disentangle physical mass dependence and control discretisation effects







Relativistic **b** decays on the lattice

Advantages:

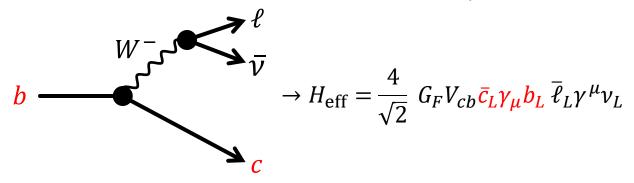
- Allows for nonperturbative renormalisation of currents using, e.g. RI-SMOM, partially conserved current relations.
- Connects b- and c-decays and gives heavy-mass dependence test of HQET.
- Statistics limited

Challenges:

- Must compute and analyse many more correlation functions
- Fitting correlation functions simultaneously is difficult
- Some subtlety in choice of fit function, e.g. which basis to use for form factors

$m{b} ightarrow c \ell ar{m{\nu}}$

In Standard Model (SM) mediated at tree level by the weak interaction



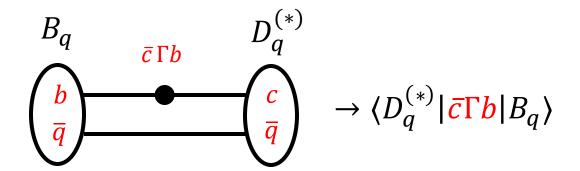
New Physics could modify this coupling, e.g. leptoquarks (LQ)

$$b \longrightarrow \delta H_{\text{eff}}^{\text{NP}} = \frac{4}{\sqrt{2}} G_F V_{cb} \left[C_{V_L} \, \bar{c}_L \gamma_\mu b_L \, \bar{\ell}_L \gamma^\mu \nu_L + C_{V_R} \bar{c}_R \gamma_\mu b_R \, \bar{\ell}_L \gamma^\mu \nu_L \right] + C_{S_L} \bar{c}_R b_L \, \bar{\ell}_R \nu_L + C_{S_R} \bar{c}_L b_R \, \bar{\ell}_R \nu_L + C_{T} \bar{c}_R \sigma_{\mu\nu} b_L \, \bar{\ell}_R \sigma^{\mu\nu} \nu_L + \text{h. c.} \right]$$

Exclusive $m{b} ightarrow c \ell m{ar{ u}}$ Decays

In nature, b and c quarks appear confined within hadrons

• Theory predictions require nonperturbative matrix elements of operators in $H_{\rm eff}$ between QCD bound states



These are typically parameterised in terms of **form factors (FFs)** according to the Lorentz and helicity structure of the decay

• 3 independent FFs for P to P, 7 for P to V

$$\left\langle D_{q} | \bar{c}b | B_{q} \right\rangle = \sqrt{M_{B_{q}} M_{D_{q}}} (w+1) h_{S}(w),$$

$$\left\langle D_{q} | \bar{c}v^{\mu}b | B_{q} \right\rangle = i \sqrt{M_{B_{q}} M_{D_{q}}} h_{V}(w) \varepsilon^{\mu\nu\alpha\beta} \epsilon_{\nu}^{*} v_{\alpha}^{\prime} v_{\beta},$$

$$\left\langle D_{q} | \bar{c}v^{\mu}b | B_{q} \right\rangle = \sqrt{M_{B_{q}} M_{D_{q}}} [h_{+}(w)(v+v^{\prime})^{\mu} + h_{-}(w)(v-v^{\prime})^{\mu}],$$

$$\left\langle D_{q} | \bar{c}v^{\mu}b | B_{q} \right\rangle = i \sqrt{M_{B_{q}} M_{D_{q}}} [h_{A_{1}}(w)(w+1)\epsilon^{*\mu} - h_{A_{2}}(w)(\epsilon^{*\mu}v)v^{\mu} - h_{A_{2}}($$

$$v = p_{B_q}/M_{B_q}, \quad v' = p_{D_q^{(*)}}/M_{D_q^{(*)}}, \quad w = v \cdot v'$$

Exclusive $m{b} ightarrow c \ell m{ar{ u}}$ Decays

Lattice calculations of the FFs are progressing rapidly, with many new results in the last few years:

Fermilab-MILC: 2+1 asqtad, Wilson-clover b and c quarks

HPQCD: 2+1+1 HISQ, heavy-HISQ b

JLQCD: 2+1 Möbius domain-wall, Möbius domain-wall b

	$h_{\pm}(w)$	$h_T(w)$	$h_{A_{1,2,3},V}(w)$	$h_{T_{1,2,3}}(w)$
$B \to D^{(*)}$	✓ [1503.07237] ✓ [1505.03925*] (✓)	(✓)	✓[2105.14019] (✓) [2304.03137] (✓) [2306.05657]	(√) [2304.03137]
$B_S \to D_S^{(*)}$	✓ [1906.00701]		✓ [2105.11433] (→[2304.03137])	(√) [2304.03137]
$B_c \to J/\psi(\eta_c)$			√ [2007.06957]	

^{* 2+1} asqtad, NRQCD b quarks, HISQ c quarks

$B \rightarrow D \ell \bar{\nu}$

Good agreement between lattice calculations for SM FFs and also with experiment!



$$\frac{d\Gamma}{dw} = |V_{cb}|^2 G(w)^2 R(w),$$

where for $\ell=\mu$ or e

$$G(w) = \frac{2\sqrt{M_B M_D}}{M_D + M_B} \times f_+(w).$$

This gives the most recent averages

$$V_{cb}^{\rm HFLAV} = 39.14 \pm 0.92_{\rm exp} \pm 0.36_{\rm th} \times 10^{-3}$$

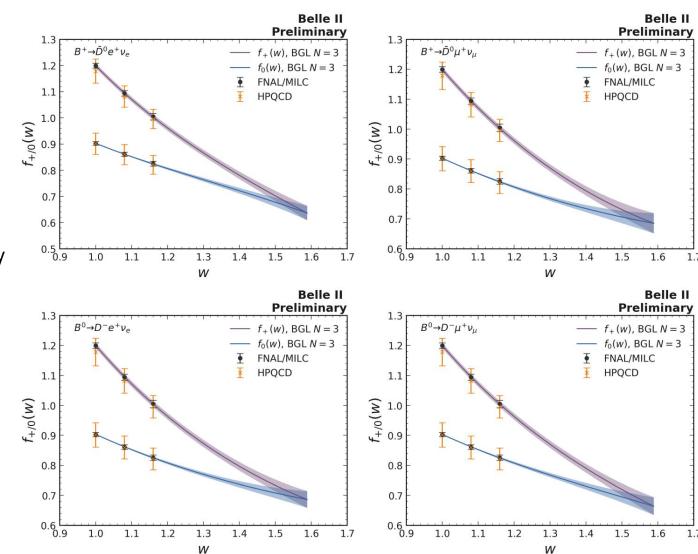
$$R_{\rm th}^{\rm HFLAV}(D) = \frac{\Gamma(B \to D\tau \bar{\nu}_{\tau})}{\Gamma(B \to D\mu \bar{\nu}_{\mu})} = 0.298 \pm 0.004$$

$$R_{\rm exp}^{\rm HFLAV}(D) = 0.339 \pm 0.030$$

$B \rightarrow D\ell\bar{\nu}$ Belle II [2210.13143]

New results from Belle II using $189 {\rm fb}^{-1}$ integrated luminosity also agree well with theory

- Note the limited w range of old lattice calculations
- Calculations underway at Fermilab-MILC collaboration to update with all-HISQ calculation



Clockwise from top left: $\frac{\chi^2}{\text{dof}} = \frac{18.2}{14}, \frac{12.3}{14}, \frac{11.0}{14}, \frac{15.1}{14}$

$\boldsymbol{B} \to \boldsymbol{D}^* \ell \boldsymbol{\bar{\nu}}$

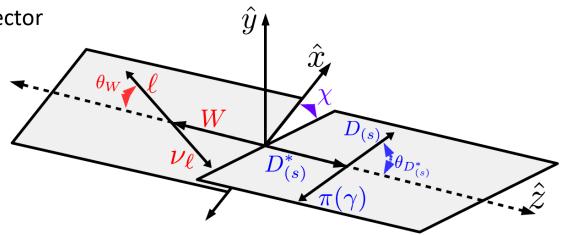
• Lattice calculation harder than for $B \to D$ due to noisier vector and larger number of FFs.

- Rich angular structure due to vector D^* final state
- Angular asymmetry observables, e.g.

$$A_{FB} = \frac{1}{\Gamma} \left[\int_{0}^{1} - \int_{-1}^{0} \frac{d\Gamma}{d\cos(\theta_W)} d\cos(\theta_W) \right]$$

$$A_{\lambda_{\ell}} = \frac{\Gamma^{\lambda_{\ell} = -\frac{1}{2}} - \Gamma^{\lambda_{\ell} = +\frac{1}{2}}}{\Gamma}$$

$$F_L = \frac{\Gamma^{\lambda_{D^*}=0}}{\Gamma}$$



3 LQCD results for 4 SM FFs away from zero recoil

Published:

Fermilab-MILC: 2+1 asqtad, Wilson-clover b and c quarks

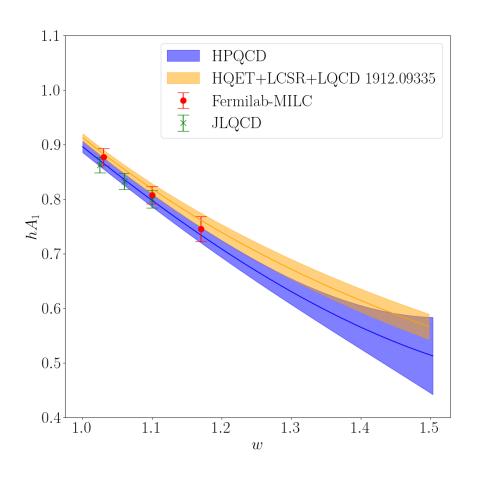
arxiv:

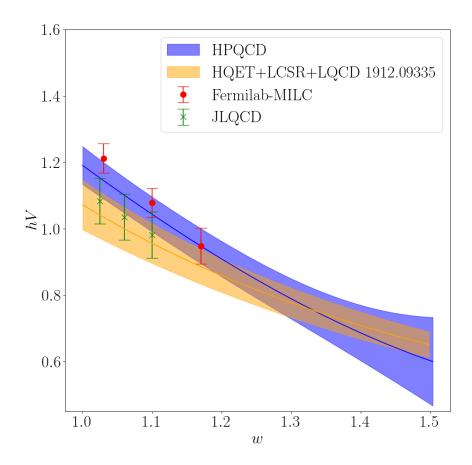
HPQCD: 2+1+1 HISQ, heavy-HISQ b (+ Tensor FFs)

JLQCD: 2+1 Möbius domain-wall

$\boldsymbol{B} \to \boldsymbol{D}^* \ell \overline{\boldsymbol{\nu}}$

Good agreement between lattice calculations of the SM FFs $h_{\!A_1}$ and $h_{\!V}$

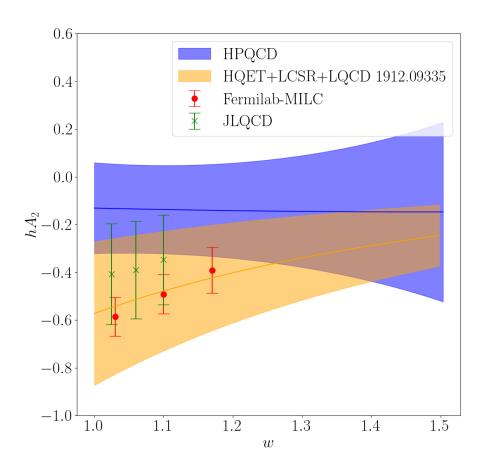


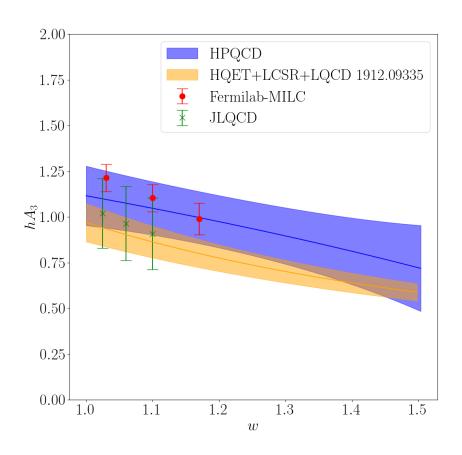


[2105.14019, 2304.03137,2306.05657]

$\boldsymbol{B} \to \boldsymbol{D}^* \ell \overline{\boldsymbol{\nu}}$

agreement between lattice calculations of SM FFs h_{A_2} and h_{A_3} less good





[2105.14019, 2304.03137,2306.05657]

$B \rightarrow D^* \ell \bar{\nu}$

Some tension with experimental shape $\approx 2\sigma$.

Exclusive, model-independent V_{cb} using full range of Exp. data and lattice FFs

$$|V_{cb}^{\text{FNAL}}| = 38.40 \pm 0.78 \times 10^{-3}$$

 $|V_{cb}^{\text{HPQCD}}| = 39.31 \pm 0.74 \times 10^{-3}$

Both in good agreement with 2021 HFLAV exclusive average, using $B \to D^{(*)} \ell \bar{\nu}$ and $B_S \to D_S^{(*)} \ell \bar{\nu}$:

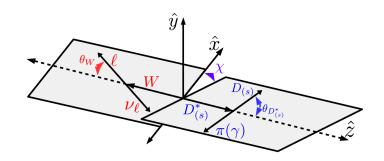
$$|V_{cb}^{\text{HFLAV}}| = 38.90 \pm 0.53 \times 10^{-3}$$

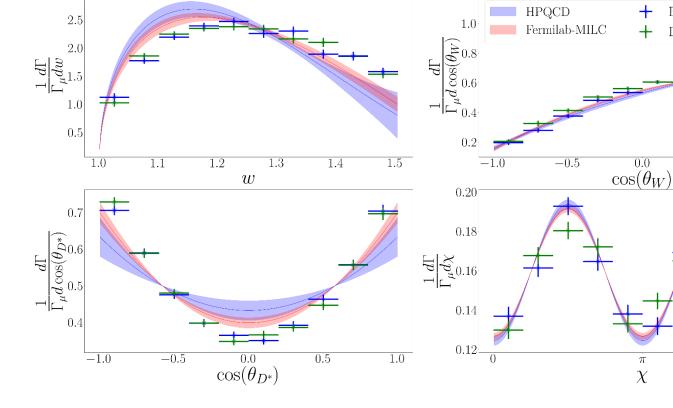
Compare the inclusive result:

$$|V_{cb}^{\text{HFLAV}}| = 42.19 \pm 0.78 \times 10^{-3}$$

In tension at the level of $\approx 3.5\sigma$

$$V_{cb}^{JLQCD} = 39.19(90) \times 10^{-3}$$





Belle $B^0 \to D^{*-} \mu^+ \nu_{\mu}$

0.5

1.0

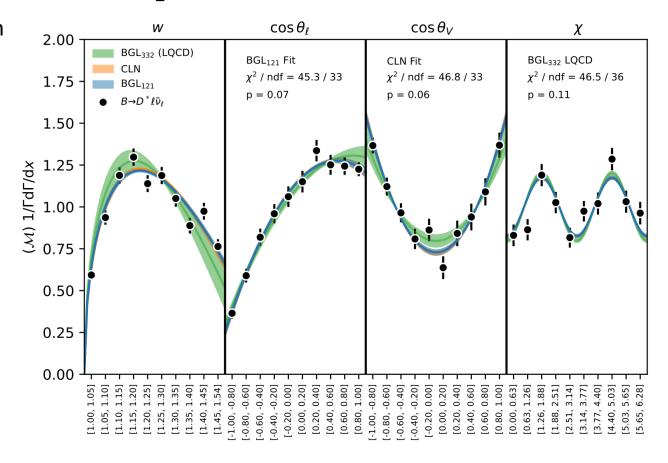
$B \to D^* \ell \bar{\nu}$ Belle [2301.07529]

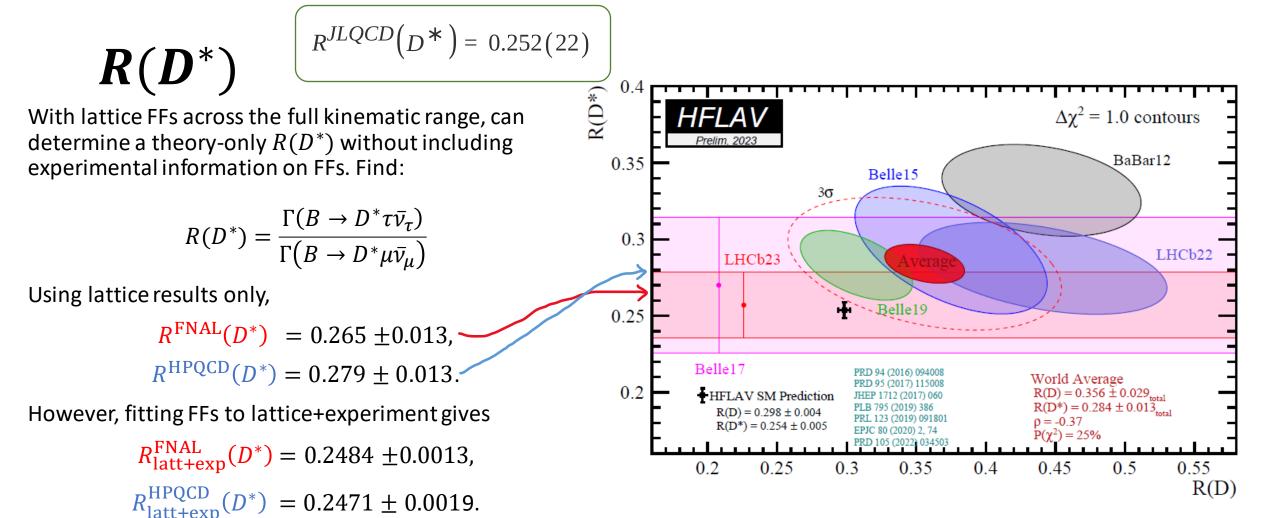
New results from Belle for \bar{B}^0 and B^- mode shapes (Green BGL332 band is Fermilab-MILC 2105.14019) using full 711fb $^{-1}$. Using zero recoil lattice results together with HFLAV branching fractions they find:

$$|V_{cb}|_{BGL} = 40.6 \pm 0.9 \times 10^{-3}$$
.

Also find angular asymmetry variables for light modes consistent with lattice-only SM results

	Belle 2301.07529	HPQCD 2304.03137
$A_{FB}^{\ell=e}$	0.230 ± 0.019	0.274 ± 0.023
$A_{FB}^{\ell=\mu}$	0.252 ± 0.020	0.270 ± 0.024
$A_{FB}^{\ell=\mu} - A_{FB}^{\ell=e}$	0022 ± 0.027	-0.0035 ± 0.0009
$\underline{F_L^{\ell=e} + F_L^{\ell=\mu}}$	0.501 ± 0.012	0.430 ± 0.036
2		





Most recent measurements (including new 2023 LHCb measurement!) in good agreement with SM, but $\approx 3\sigma$ tension remains with average.

Need to improve understanding of the shape of the lattice FFs for $B \to D^* \ell \bar{\nu}$

• HQET fits to lattice $B \to D$ + zero recoil lattice $B \to D^*$ + QCDSR + LCSR agree with determinations using exp. data as input

Constraining NP in $m{b} o c \ell ar{m{ u}}$ using $m{B} o m{D}^{(*)} \ell ar{m{ u}}$

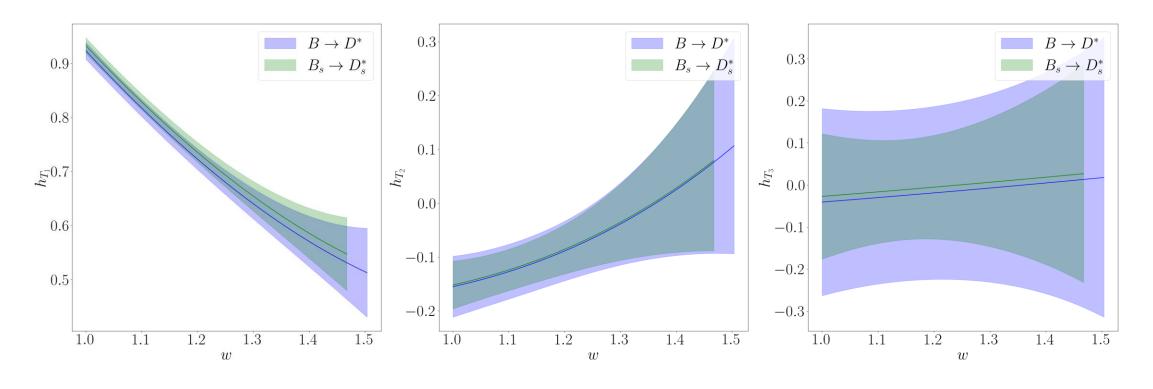
These measurements can be used to constrain NP appearing in the light leptonic mode.

• The patterns of Wilson coefficients generated by different tree-level models are [1801.01112]:

4	Tree-Level Models	C_{V_L}	C_{V_R}	$\mathcal{C}_{\mathcal{S}_L}$	C_{S_R}	$C_T = C_{S_L}/4$	$C_T = -C_{S_L}/4$
$\delta H_{\rm eff}^{\rm NP} = \frac{1}{\sqrt{2}} G_F V_{cb}$	Vector-like singlet	\checkmark					
$\delta H_{\rm eff}^{\rm NP} = \frac{4}{\sqrt{2}} G_F V_{cb} [$ $C_{V_L} \bar{c}_L \gamma_\mu b_L \bar{\ell}_L \gamma^\mu \nu_L$ $+ C_{V_R} \bar{c}_R \gamma_\mu b_R \bar{\ell}_L \gamma^\mu \nu_L$	Vector-like doublet		✓				
, K 111 P _11 = 1 =	W'	✓					
$+C_{S_{L}}\bar{c}_{R}b_{L}\bar{\ell}_{R}\nu_{L} +C_{S_{R}}\bar{c}_{L}b_{R}\bar{\ell}_{R}\nu_{L} +C_{T}\bar{c}_{R}\sigma_{\mu\nu}b_{L}\bar{\ell}_{R}\sigma^{\mu\nu}\nu_{L} + \text{h. c.}]$	H^\pm			✓	✓		
	S_1	✓					✓
	R_2					✓	
Note that C_{V_L} may be	S_3	\checkmark					
absorbed into V_{cb}	U_1	\checkmark	✓				
	V_2				✓		
	U_3	\checkmark					

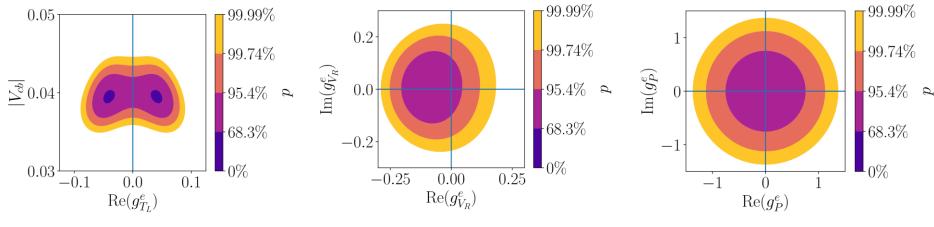
Constraining NP in $m{b} o c \ell ar{m{ u}}$ using $m{B} o m{D}^{(*)} \ell ar{m{ u}}$

Lattice tensor FFs are now available for $B \to D^* \ell \bar{\nu}$ and $B_s \to D_s^* \ell \bar{\nu}$ from HPQCD [2304.03137]:



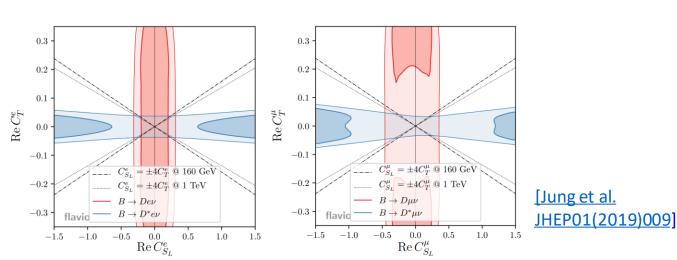
Constraining NP in $m{b} o c \ell ar{m{ u}}$ using $m{B} o m{D}^{(*)} \ell ar{m{ u}}$

Constraints for Wilson coefficients using just $B \to D^{(*)} \ell \bar{\nu}$ with e.g. $\ell = e$ are all consistent with the SM [2304.03137]



Note that $B \to D^* \ell \bar{\nu}$ is much more sensitive to a tensor coupling than $B \to D \ell \bar{\nu}$, and vice-versa for the scalar coupling

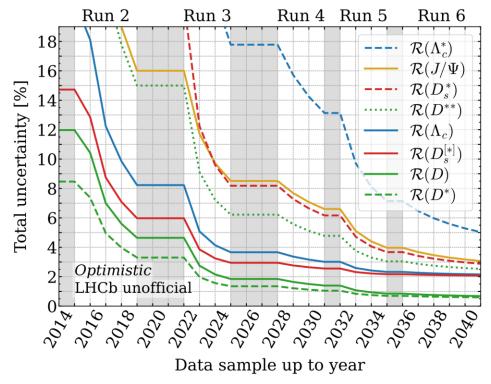
ightarrow Ideally want fully correlated lattice calculation of all $B
ightarrow D^{(*)} \ell \bar{\nu}$ FFs

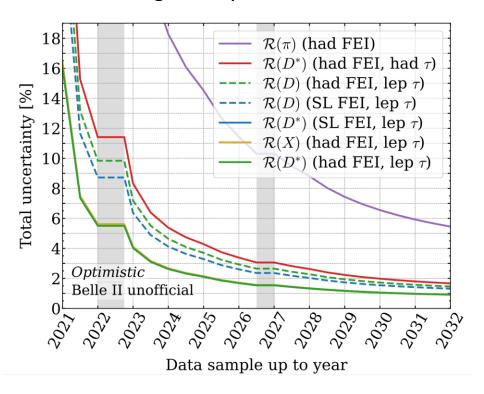


Experimental Outlook for $m{b} ightarrow c \ell m{ar{ u}}$

Optimistically, uncertainties of R-ratio measurements may reach percent level

- Commensurate uncertainties on the theory side would require treatment of QED effects
- Most recent lattice only results give $R(J/\psi) = 0.2582(38)$, $R(D_s^*) = 0.265(9)$, much more precise than experiments are likely to obtain soon
- Differential decay rate data from Belle II will allow for further tests of angular asymmetries

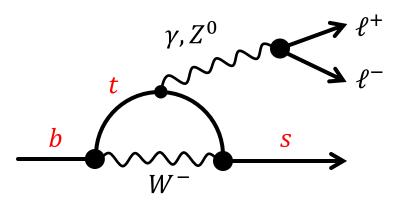




[Bernlochner et al. Rev. Mod. Phys. 94, 015003]

$$b \rightarrow s\ell^+\ell^-$$

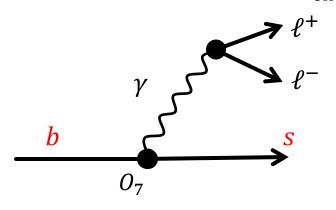
1-loop in the Standard Model



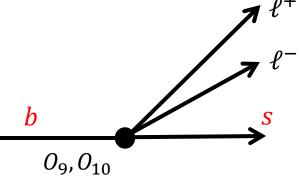
$$\to H_{\rm eff} = -\frac{4}{\sqrt{2}} \ G_F \left[V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu) + V_{ub} V_{us}^* \times \dots \right]$$

$$\mu = m_b$$

Main contributions from $H_{\rm eff}$ are from local hadronic operators



$$O_7 = rac{e}{16\pi^2} m_b \; ar{s}_L \sigma^{\mu
u} b_R \; F_{\mu
u}$$



$$O_9 = \frac{e^2}{16\pi^2} m_b \, \bar{s}_L \gamma^\mu b_L \, \bar{\ell} \gamma_\mu \ell,$$

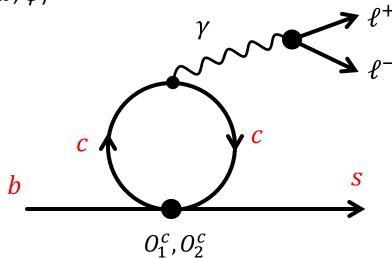
$$O_{10} = \frac{e^2}{16\pi^2} m_b \, \bar{s}_L \gamma^\mu b_L \, \bar{\ell} \gamma_\mu \gamma_5 \ell$$

→ 'local' FFs:

$$\langle M(p') | O_i^{\text{had}} | B(p) \rangle \equiv F_{\lambda}^{B \to M}(q^2) S_{\lambda}(p', p)$$

$b \rightarrow s\ell^+\ell^-$

Non-local contributions from O_1^c , O_2^c coupling to J/ψ , $\psi(2S)$, as well as on-shell states coupling to γ from O_7 (e.g. ρ , ω , ϕ)



$$O_1^c = \bar{s}_L \gamma^{\mu} c_L \, \bar{c}_L \gamma_{\mu} b_L, \quad O_2^c = \bar{s}_L^j \gamma^{\mu} c_L^i \, \bar{c}_L^i \gamma_{\mu} b_L^j$$

→ 'non-local' FFs:

$$H_{\lambda}^{B \to M}(q^2) S_{\lambda}(p', p)$$

$$\equiv \langle M(p') | T\{j_{\mu}^{\text{em}}, \sum_{i=1}^{2} C_i O_i^c + \sum_{i=3}^{6} C_i O_i + C_8 O_8\} | B(p) \rangle$$

These non-local contributions are not well understood close to resonances

- Dispersive bound for non-local FFs give model independent constraints, control truncation error, include data for e.g. B $\to K J/\psi \ell^+ \ell^-$ [2011.09813, 2206.03797]
- Usual solution: exclude veto regions with q^2 around $M_{\rm res}^2$
- Local FFs still dominate uncertainties

$$b \rightarrow s\ell^+\ell^-$$

Lattice calculations for $b \rightarrow s$ FFs are less advanced than for $b \rightarrow c$

Fermilab-MILC: 2+1 asqtad, Wilson-clover b

HPQCD: 2+1+1 HISQ, heavy-HISQ b

	$h_{\pm}(w)$	$h_T(w)$	$h_{A_{1,2,3},V}(w)$	$h_{T_{1,2,3}}(w)$
$B \to K^{(*)}$	✓ [2207.12468] ✓ [1509.06235]	✓ [2207.12468] ✓ [1509.06235]	✓ [1310.3722*]	✓ [1310.3722*]
$B_s o \phi$			✓ [1310.3722*]	✓ [1310.3722*]
$B_c \to D_s^{(*)}$	✓ [2108.11242]	✓ [2108.11242]		

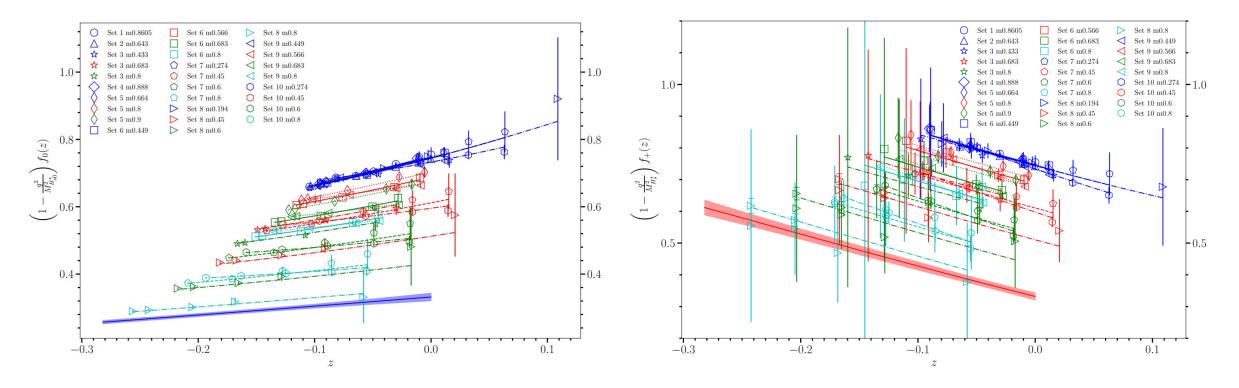
^{* 2+1} asqtad, NRQCD b quarks

Note that the HPQCD calculation of the $B \to K$ SM+Tensor FFs [2207.12468] also included SM+Tensor $D \to K$ FFs. The Fermilab-MILC collaboration has also computed the $D \to \pi$, $D \to K$ and $D_S \to K$ SM FFs using 2+1+1 HISQ for all quarks [2212.12648], with work in progress to extend this calculation to the B.

$B \to K \ell^+ \ell^-$ [2207.12468]

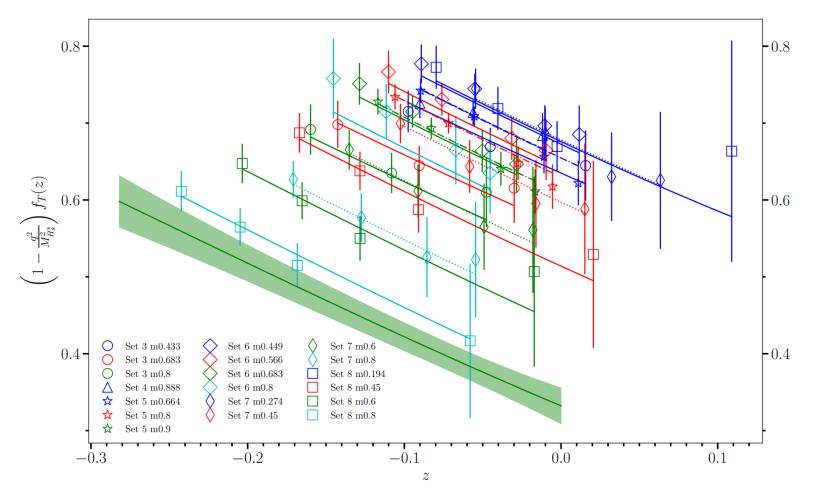
W. G. Parrott, C. Bouchard, and C. T. H. Davies: 2+1+1 HISQ, heavy-HISQ b

$$\text{BCL parameterisation:} \ \ z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}, \quad f^Y(\mathbf{q}^2) \sim L_\chi \times \ P\left(q^2, M_{b\bar{s}}^{\mathrm{res}_Y^2}\right) \times \sum a_n^Y\left(\frac{\Lambda_{\mathrm{QCD}}}{M_H}, a m_h, a \Lambda_{\mathrm{QCD}}\right) \ z^n$$



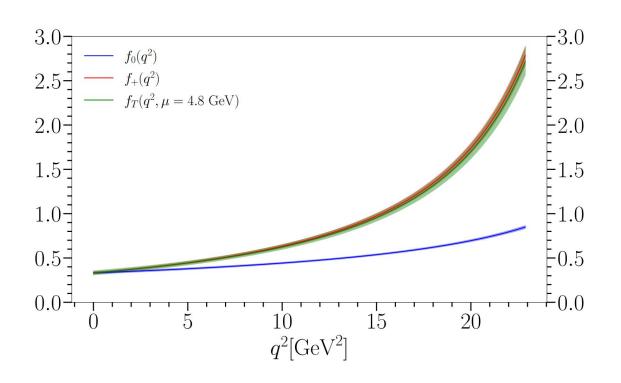
$B \to K \ell^+ \ell^-$ [2207.12468]

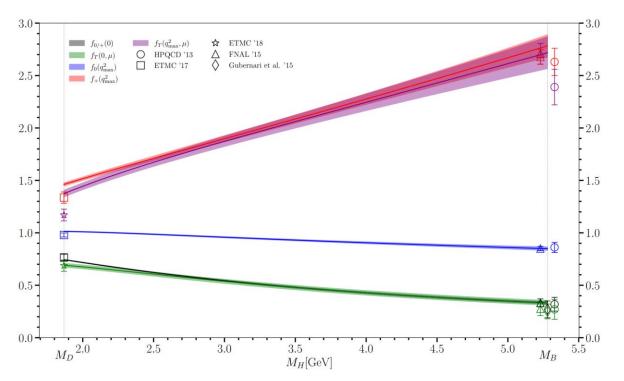
W. G. Parrott, C. Bouchard, and C. T. H. Davies: 2+1+1 HISQ, heavy-HISQ b



$B \to K \ell^+ \ell^-$ [2207.12468]

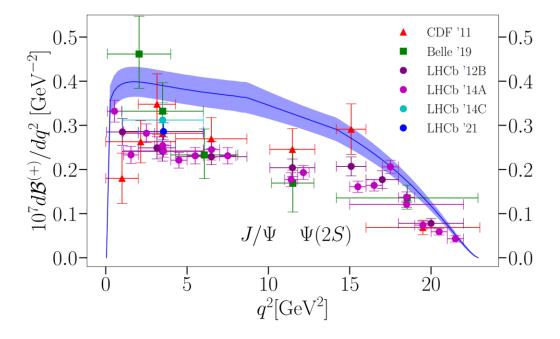
W. G. Parrott, C. Bouchard, and C. T. H. Davies: 2+1+1 HISQ, heavy-HISQ b





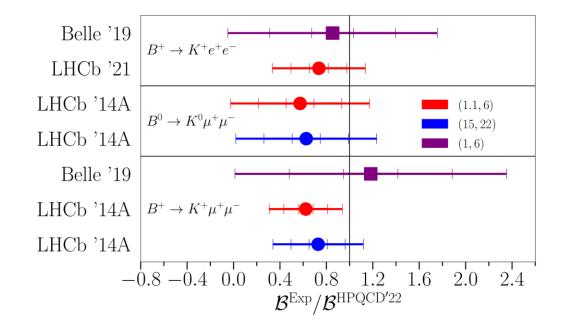
$B \to K \ell^+ \ell^-$ [2207.13371]

W. G. Parrott, C. Bouchard, and C. T. H. Davies: 2+1+1 HISQ, heavy-HISQ b



• Integrating over allowed regions gives tension at the level of $\approx 3-5\sigma$ with recent experimental measurements.

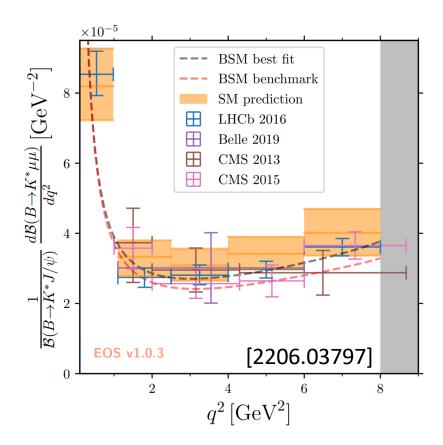
- $B^+ \to K^+ \ell^+ \ell^-$ differential branching fraction shows clear discrepancy with experimental measurements [2207.13371]
- Similar situation for $B^0 \to K^0 \ell^+ \ell^-$ and $B^- \to K^- \ell^+ \ell^-$ modes.

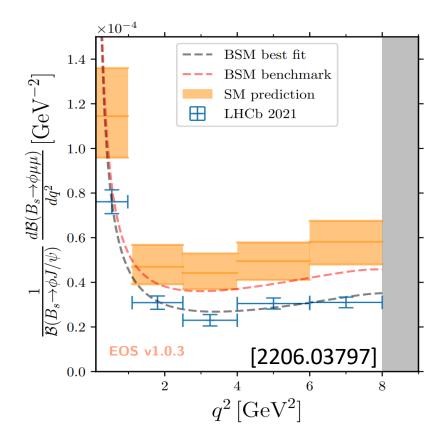


$$m{B}
ightarrow m{K}^* \ell^+ \ell^-$$
, $m{B}_{S}
ightarrow m{\phi} \ell^+ \ell^-$

Dispersive bound for local and non-local FFs combined with older lattice results and LCSR [2206.03797]

• Similar discrepancy to $B \to K$ in both cases.





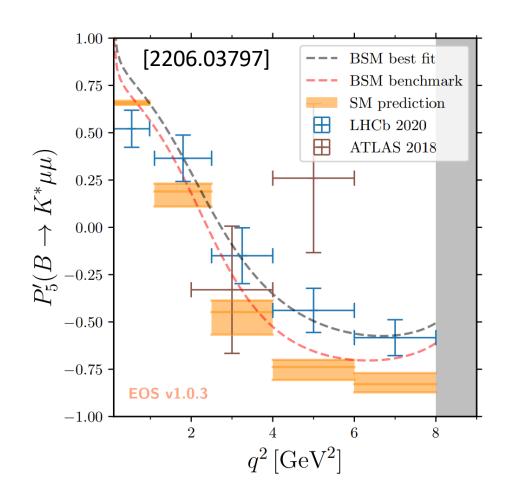
$$m{B}
ightarrow m{K}^* \ell^+ \ell^-$$
, $m{B}_{S}
ightarrow m{\phi} \ell^+ \ell^-$

Similar level of discrepancy for P_5'

$$P_5'(q^2) = \frac{S_5(q^2)}{\sqrt{F_L(q^2)(1-F_L(q^2))}}$$

$$S_{5}(q^{2}) = -\frac{4}{3} \left[\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} - \int_{0}^{\frac{\pi}{2}} - \int_{\frac{3\pi}{2}}^{\frac{2\pi}{2}} d\phi \left[\int_{0}^{1} - \int_{-1}^{0} d\cos(\theta_{K}) \right] \right] \times \frac{d^{3}(\Gamma - \bar{\Gamma})}{dq^{2} d\cos(\theta_{K}) d\phi} / \frac{d(\Gamma + \bar{\Gamma})}{dq^{2}}$$

$$F_L(q^2) = \frac{d\Gamma^{\lambda_{K^*}=0}}{dq^2} / \frac{d\Gamma}{dq^2}$$



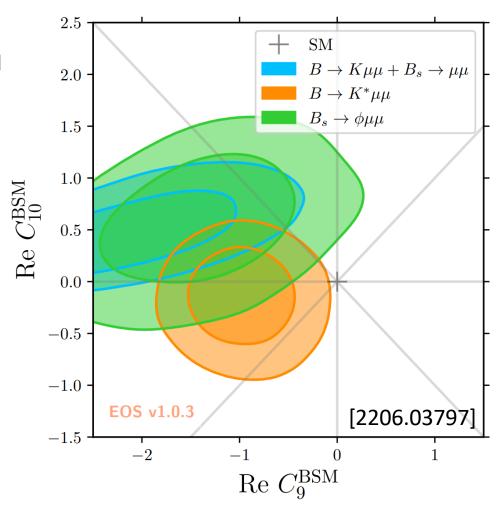
$b \rightarrow s\ell^+\ell^-$: BSM analysis

Combine experimental results with LQCD FFs with LCSR, improved dispersive bounds to constrain C_9 and C_{10} [2206.03797]

$$B \to K \mu^+ \mu^-, B_S \to \mu^+ \mu^-$$

 $B \to K^* \mu^+ \mu^-$
 $B \to \phi \mu^+ \mu^-$

→ Look forward to simultaneous BSM analysis using new LQCD (e.g. W. G. Parrott et al.) and new experimental results in these channels

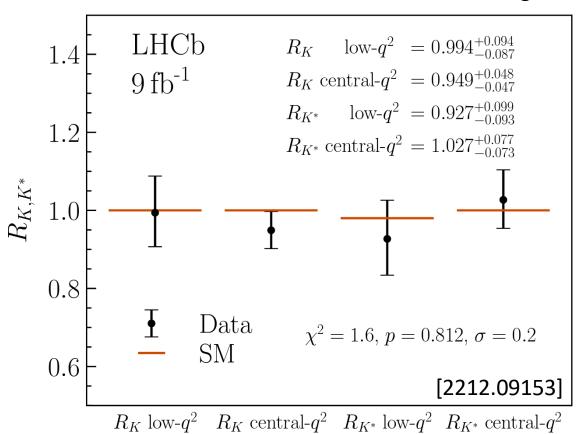


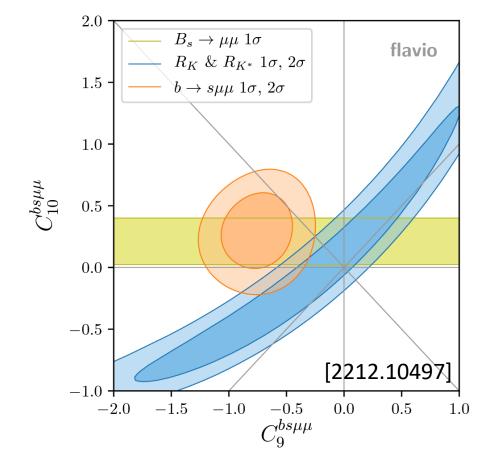
(this figure does not include HPQCD `22 $B \to K$ or CMS $B_s \to \mu^+\mu^-$ [2212.10311], bounds for each channel computed separately)

$b \rightarrow s\ell^+\ell^-$: BSM analysis - LFU

New measurement of $R_{K^{(*)}}$ by LHCb asks if deviations from SM seen in $b \to s \mu^+ \mu^-$ can be explained consistently.

- Best performing 1D LFU NP case, C_9^{univ} [2212.10497]
- QCD effects could contribute → understanding non-local contributions very important





$\boldsymbol{b} \rightarrow \boldsymbol{u}\ell\bar{\boldsymbol{\nu}}$

Form factors much more expensive computationally due to light quarks, especially for physical pions

Fermilab-MILC: 2+1 asqtad, Wilson-clover b and c quarks

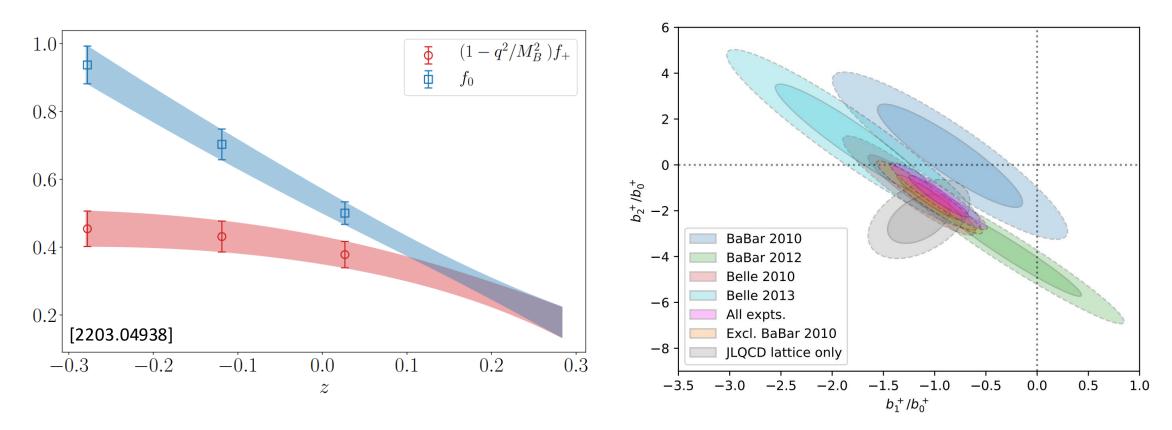
HPQCD: 2+1+1 HISQ, heavy-HISQ b

JLQCD: 2+1 Möbius domain-wall, Möbius domain-wall b

	$h_{\pm}(w)$	$h_T(w)$	$h_{A_{1,2,3},V}(w)$	$h_{T_{1,2,3}}(w)$
$B \to \pi/B \to \rho$	✓ [2203.04938] [1503.07839]			
$B_S \to K^{(*)}$	√ [1901.02561]			
$B_c \to D^{(*)}$	✓ [2108.11242]	✓ [2108.11242]		

$B \to \pi \ell \bar{\nu}$ [2203.04938]

Recent JLQCD calculation of $B \to \pi$ form factors

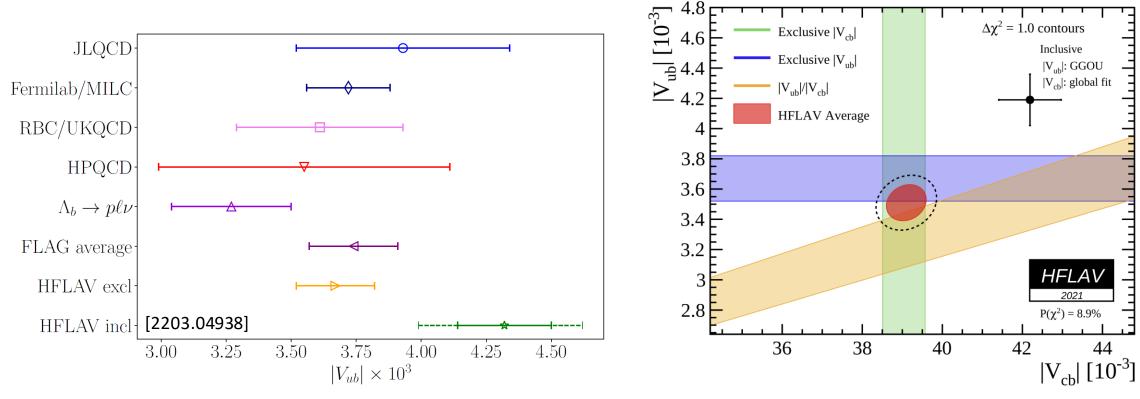


Good agreement between lattice shape parameters and experimental measurements

$B \to \pi \ell \bar{\nu}$ [2203.04938]

 $B o \pi \ell \bar{\nu}$ provides a means to compute the CKM matrix element $|V_{ub}|$

- JLQCD find $V_{cb} = 3.93 \pm 0.41 \times 10^{-3}$
- Work in progress by both HPQCD and Fermilab-MILC collaborations

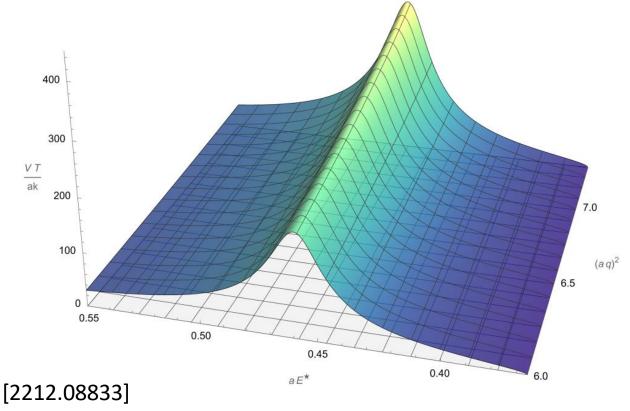


Also offers a test of LFU through the ratio $R(\pi) = \Gamma(B \to \pi \tau \bar{\nu}_{\tau}) / \Gamma(B \to \pi \ell \bar{\nu}_{\ell})$, expected to be measured by Belle II with precision of $\approx 14\%$

$\boldsymbol{B} \rightarrow \boldsymbol{\rho} (\rightarrow \pi \pi) \ell \bar{\boldsymbol{\nu}}$ [2212.08833]

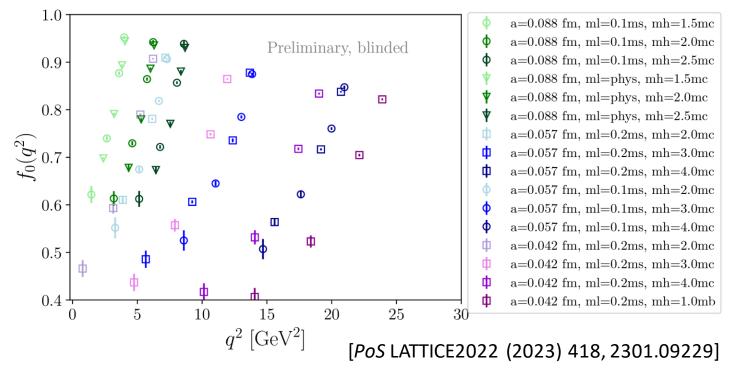
 $B o
ho (o \pi\pi) \ell \bar{\nu}$ provides a complementary determination of the CKM matrix element $|V_{ub}|$

- Challenging on the lattice, due to ho resonance.
- 2212.08833 follows the approach of Briceño, Hansen, and Walker-Loud (e.g. [1406.5965]) to compute the transition amplitude, $\frac{VT}{ak}$.
- Currently, only preliminary results for the vector current at a single lattice spacing.
- Nevertheless, demonstrates feasibility of such calculations
- Experimental data available from BaBar, Belle and recently Belle II [2211.15270] but hadronic matrix elements not yet well known.



$B_S \to K \ell \bar{\nu}$ [2203.04938]

Work in progress by Fermilab-MILC on $B_s \to K$ using 2+1+1 HISQ gauge configurations and HISQ heavy quarks, e.g



Summary

$$b \to c \ell \bar{\nu}$$

- New $B_{(s)} o D_{(s)}^* \ell \bar{\nu}$ SM+Tensor FFs from HPQCD, $B o D^* \ell \bar{\nu}$ SM FFs from JLQCD, WIP by Fermilab-MILC on $B_{(s)} o D_{(s)}^{(*)} \ell \bar{\nu}$
- Lattice $R(D^*)$ seems to disagree with HQET predictions, some discrepancy with semimuonic shape and asymmetry measurements from Belle and Belle II
- Need to look carefully at ingredients of lattice calculations
- New experimental results expected in $B \to D^* \ell \bar{\nu}$ and other channels soon

$$b \rightarrow s \ell^+ \ell^-$$

- Recent SM+Tensor FFs from HPQCD confirm tension seen between theory and experiment in branching ratios in B \rightarrow K [2207.12468, 2207.13371], WIP also at Fermilab-MILC on B \rightarrow K
- LHCb $R_{K^{(*)}}$ [2212.09153] highlights importance of understanding non-local contributions -> look to new dispersive bound calculations [2011.09813, 2206.03797]
- WIP on $B_s \to \phi$ and B $\to K^*$ FFs at HPQCD will clarify situation in these channels where current discrepancy is based on older nonrelativistic calculations

$b \to u \ell \bar{\nu}$

- $B \to \pi \ell \bar{\nu}$ SM FFs from JLQCD in agreement with experimentally measured shape, give exclusive V_{cb} compatible with both inclusive and exclusive averages [2203.04938]
- WIP by Leskovec et al. on $B \to \rho (\to \pi \pi) \ell \bar{\nu}$ [2212.08833], treating the ρ resonance using the Lellouch-Lüscher method
- WIP by HPQCD on $B \to \pi \ell \bar{\nu}$
- WIP by Fermilab-MILC on $B_S \to K \ell \bar{\nu}$ and $B \to \pi \ell \bar{\nu}$

Thanks for listening!

Backup Slides

$B^0 \rightarrow D^{*-}\ell^+\nu$ Belle II Preliminary [2305.10746]

Recently, Belle II reported preliminary results for a measurement of $|V_{cb}|$ using 189fb^{-1} of e^+e^- collisions at the $\Upsilon(4S)$ resonance and 18fb^{-1} of collisions 60 MeV below the $\Upsilon(4S)$ resonance.

Using LQCD for the normalisation at zero recoil:

$$|V_{cb}|_{BGL} = 40.6 \pm 0.3^{stat} \pm 1.0^{syst} \pm 0.6^{theo} \times 10^{-3}$$
.

