

Lattice Gauge Theory Contributions to New Physics Searches

Review of Heavy-Quark Flavour Physics

Judd Harrison University of Glasgow

Outline of the Talk

I will mostly focus on b decays:

- Lattice methods for simulating *b* quarks
- $b \to c\ell \bar{\nu} : B_q \to D_q^{(*)}\ell\nu, R\left(D_{(s)}^{(*)}\right), A_{FB}$

•
$$b \to s\ell^+\ell^-: B \to K^{(*)}, R(K^{(*)}), P'_5, B_s \to \phi\ell^+\ell^-$$

• $b \rightarrow u/d: B \rightarrow \pi, B_s \rightarrow K$

Outline of the Talk

Disclaimer: This talk will contain my own opinions!

I will mostly focus on b decays:

- Lattice methods for simulating *b* quarks
- $b \to c\ell \bar{\nu} : B_q \to D_q^{(*)}\ell\nu, R\left(D_{(s)}^{(*)}\right), A_{FB}$
- $b \to s\ell^+\ell^-: B \to K^{(*)}, R(K^{(*)}), P'_5, B_s \to \phi\ell^+\ell^-$
- $b \rightarrow u/d: B \rightarrow \pi, B_s \rightarrow K$

Relativistic **b** decays on the lattice

Several recent and currently ongoing lattice calculations of hadronic matrix elements using relativistic *b* quarks, e.g.

B_c-meson decays [2003.00914, 2007.06957, 2108.11242], *B_s*-meson decays [1906.00701, 2105.11433], *B*-meson decays [2203.04938, 2207.12468, 2301.09229, 2304.03137]

Common approach:

- Perform lattice calculation at multiple b quark masses at and below m_b , using the same action for all quarks
- fit results using HQET-like form to disentangle physical mass dependence and control discretisation effects

Relativistic **b** decays on the lattice

Advantages:

- Allows for nonperturbative renormalisation of currents using, e.g. RI-SMOM, partially conserved current relations.
- Connects *b* and *c*-decays and gives heavy-mass dependence test of HQET.
- Statistics limited

Challenges:

- Must compute and analyse many more correlation functions
- Fitting correlation functions simultaneously is difficult
- Some subtlety in choice of fit function, e.g. which basis to use for form factors

$b \to c \ell \bar{\nu}$

• In Standard Model (SM) mediated at tree level by the weak interaction

• New Physics could modify this coupling, e.g. leptoquarks (LQ)

Exclusive $b ightarrow c \ell ar{ u}$ Decays

In nature, *b* and *c* quarks appear confined within hadrons

 Theory predictions require nonperturbative matrix elements of operators in H_{eff} between QCD bound states

 $\langle D^* | \overline{c} v^5 h | B \rangle = - \langle M_p | M_p h_p(w) (\epsilon^* \cdot v) \rangle$

These are typically parameterised in terms of **form factors (FFs)** according to the Lorentz and helicity structure of the decay

• 3 independent FFs for P to P, 7 for P to V

v

$$\begin{pmatrix} D_{q} | \bar{c}b | B_{q} \end{pmatrix} = \sqrt{M_{B_{q}}M_{D_{q}}}(w+1) h_{S}(w), \\ \begin{pmatrix} D_{q} | \bar{c}\gamma^{\mu}b | B_{q} \end{pmatrix} = \sqrt{M_{B_{q}}M_{D_{q}}}[h_{+}(w)(v+v')^{\mu} + h_{-}(w)(v-v')^{\mu}], \\ \begin{pmatrix} D_{q}^{*} | \bar{c}\gamma^{\mu}\gamma^{5}b | B_{q} \end{pmatrix} = i\sqrt{M_{B_{q}}M_{D_{q}}}[h_{+}(w)(v+v')^{\mu} + h_{-}(w)(v-v')^{\mu}], \\ \begin{pmatrix} D_{q}^{*} | \bar{c}\gamma^{\mu}\gamma^{5}b | B_{q} \end{pmatrix} = \sqrt{M_{B_{q}}M_{D_{q}}}[h_{A_{1}}(w)(w+1)\epsilon^{*\mu} - (h_{A_{2}}(w)(\epsilon^{*\mu}\cdot v)v^{\mu} - h_{A_{3}}(w)(\epsilon^{*\mu}\cdot v)v^{\mu}], \\ \begin{pmatrix} D_{q}^{*} | \bar{c}\sigma^{\mu\nu}b | B_{q} \end{pmatrix} = i\sqrt{M_{B_{q}}M_{D_{q}}}[h_{T}(w)(v'^{\mu}v^{\nu} - v'^{\nu}v^{\mu})]. \\ \begin{pmatrix} D_{q}^{*} | \bar{c}\sigma^{\mu\nu}b | B_{q} \end{pmatrix} = -\sqrt{M_{B_{q}}M_{D_{q}}}\epsilon^{\mu\nu\alpha\beta}[h_{T_{1}}(w)\epsilon^{*}_{\alpha}(v+v')_{\beta} + (h_{T_{2}}(w)\epsilon^{*}_{\alpha}(v-v')_{\beta} + h_{T_{3}}(w)(\epsilon^{*\cdot}\cdot v)v_{\alpha}v'_{\beta}] \end{pmatrix}$$

Exclusive $b ightarrow c \ell ar{ u}$ Decays

Lattice calculations of the FFs are progressing rapidly, with many new results in the last few years:

Fermilab-MILC: 2+1 asqtad, Wilson-clover b and c quarks

HPQCD: 2+1+1 HISQ, heavy-HISQ b

JLQCD: 2+1 Möbius domain-wall, Möbius domain-wall b

	$h_{\pm}(w)$	$h_T(w)$	$h_{A_{1,2,3},V}(w)$	$h_{T_{1,2,3}}(w)$
$B \rightarrow D^{(*)}$	 ✓ [1503.07237] ✓ [1505.03925*] (✓) 	(✓)	 ✓ [2105.14019] (✓) [2304.03137] (✓) [2306.05657] 	(✓) [2304.03137]
$B_s \to D_s^{(*)}$	✓ [1906.00701]		✓ [2105.11433] (→[2304.03137])	(✓) [2304.03137]
$B_c \rightarrow J/\psi(\eta_c)$			✓ [2007.06957]	

* 2+1 asqtad, NRQCD b quarks, HISQ c quarks

$B \to D \ell \bar{\nu}$

Good agreement between lattice calculations for SM FFs and also with experiment!

 $\frac{d\Gamma}{dw} = |V_{cb}|^2 G(w)^2 R(w),$ where for $\ell = \mu$ or e $G(w) = \frac{2\sqrt{M_B M_D}}{M_D + M_D} \times f_+(w).$ This gives the most recent averages $V_{ch}^{\rm HFLAV} = 39.14 \pm 0.92_{\rm exp} \pm 0.36_{\rm th} \times 10^{-3}$ $R_{\rm th}^{\rm HFLAV}(D) = \frac{\Gamma(B \to D\tau \bar{\nu}_{\tau})}{\Gamma(B \to D\mu \bar{\nu}_{\mu})} = 0.298 \pm 0.004$

 $R_{\exp}^{\text{HFLAV}}(D) = 0.339 \pm 0.030$

$B \rightarrow D \ell \bar{\nu}$ Belle II [2210.13143]

New results from Belle II using 189fb⁻¹ integrated luminosity also agree well with theory

- Note the limited *w* range of old lattice calculations
- Calculations underway at Fermilab-MILC collaboration to update with all-HISQ calculation

$B \to D^* \ell \bar{\nu}$

- Lattice calculation harder than for $B \rightarrow D$ due to noisier vector and larger number of FFs.
- Rich angular structure due to vector D^* final state
- Angular asymmetry observables, e.g.

$$A_{FB} = \frac{1}{\Gamma} \left[\int_{0}^{1} - \int_{-1}^{0} \right] \frac{d\Gamma}{d\cos(\theta_W)} d\cos(\theta_W)$$

$$A_{\lambda_{\ell}} = \frac{\Gamma^{\lambda_{\ell} = -\frac{1}{2}} - \Gamma^{\lambda_{\ell} = +\frac{1}{2}}}{\Gamma}$$

3 LQCD results for 4 SM FFs away from zero recoil

Published: Fermilab-MILC: 2+1 asqtad, Wilson-clover *b* and *c* quarks arxiv: HPQCD: 2+1+1 HISQ, heavy-HISQ *b* (+ Tensor FFs) JLQCD: 2+1 Möbius domain-wall

$B \to D^* \ell \bar{\nu}$

Good agreement between lattice calculations of the SM FFs h_{A_1} and h_V

[2105.14019, 2304.03137, 2306.05657]

$B \rightarrow D^* \ell \bar{\nu}$

agreement between lattice calculations of SM FFs h_{A_2} and h_{A_3} less good

[2105.14019, 2304.03137, 2306.05657]

1.4

1.5

$B \rightarrow D^* \ell \overline{\nu}$

Some tension with experimental shape $\approx 2\sigma$.

Exclusive, model-independent V_{cb} using full range of Exp. data and lattice FFs

 $\begin{aligned} |V_{cb}^{\text{FNAL}}| &= 38.40 \pm 0.78 \times 10^{-3} \\ |V_{cb}^{\text{HPQCD}}| &= 39.31 \pm 0.74 \times 10^{-3} \end{aligned}$

Both in good agreement with 2021 HFLAV exclusive average, using $B \rightarrow D^{(*)}\ell\bar{\nu}$ and $B_s \rightarrow D^{(*)}_s\ell\bar{\nu}$:

$$\left|V_{cb}^{\rm HFLAV}\right| = 38.90 \pm 0.53 \times 10^{-3}$$

Compare the inclusive result:

$$\left|V_{cb}^{\rm HFLAV}\right| = 42.19 \pm 0.78 \times 10^{-3}$$

In tension at the level of $\approx 3.5\sigma$

$$V_{cb}^{JLQCD} = 39.19(90) \times 10^{-3}$$

$B \rightarrow D^* \ell \bar{\nu}$ Belle [2301.07529]

New results from Belle for \overline{B}^0 and B^- mode shapes (Green BGL332 band is Fermilab-MILC 2105.14019) using full 711 fb⁻¹. Using zero recoil lattice results together with HFLAV branching fractions they find:

$$|V_{cb}|_{BGL} = 40.6 \pm 0.9 \times 10^{-3}.$$

Also find angular asymmetry variables for light modes consistent with lattice-only SM results

	Belle 2301.07529	HPQCD 2304.03137
$A_{FB}^{\ell=e}$	0.230 ± 0.019	0.274 ± 0.023
$A_{FB}^{\ell=\mu}$	0.252 ± 0.020	0.270 ± 0.024
$A_{FB}^{\ell=\mu} - A_{FB}^{\ell=e}$	0022 ± 0.027	-0.0035 ± 0.0009
$\frac{F_L^{\ell=e} + F_L^{\ell=\mu}}{2}$	0.501 ± 0.012	0.430 ± 0.036

Most recent measurements (including new 2023 LHCb measurement!) in good agreement with SM, but $\approx 3\sigma$ tension remains with average.

Need to improve understanding of the shape of the lattice FFs for $B \rightarrow D^* \ell \bar{\nu}$

• HQET fits to lattice $B \rightarrow D$ + zero recoil lattice $B \rightarrow D^*$ + QCDSR + LCSR agree with determinations using exp. data as input

Constraining NP in $b \to c \ell \overline{\nu}$ using $B \to D^{(*)} \ell \overline{\nu}$

These measurements can be used to constrain NP appearing in the light leptonic mode.

• The patterns of Wilson coefficients generated by different tree-level models are [1801.01112]:

4	Tree-Level Models	C_{V_L}	C_{V_R}	C_{S_L}	C_{S_R}	$C_T = C_{S_L}/4$	$C_T = -C_{S_L}/4$
$\delta H_{\rm eff}^{\rm NP} = \frac{1}{\sqrt{2}} G_F V_{cb} [$	Vector-like singlet	\checkmark					
$C_{V_L} \overline{c}_L \gamma_\mu b_L \overline{\ell}_L \gamma^\mu \nu_L$	Vector-like doublet		\checkmark				
$+ C_{V_R} \bar{c}_R \gamma_\mu \underline{b}_R \ell_L \gamma^\mu \nu_L$	W'	\checkmark					
$+C_{S_{L}}\bar{c}_{R}b_{L}\bar{\ell}_{R}\nu_{L} +C_{S_{R}}\bar{c}_{L}b_{R}\bar{\ell}_{R}\nu_{L} +C_{T}\bar{c}_{R}\sigma_{\mu\nu}b_{L}\bar{\ell}_{R}\sigma^{\mu\nu}\nu_{L} + h.c.]$	H^{\pm}			\checkmark	\checkmark		
	S_1	\checkmark					1
	L. C.]	•					•
	<i>R</i> ₂					\checkmark	
Note that C_{V_L} may be absorbed into V_{cb}	S ₃	\checkmark					
	U ₁	\checkmark	\checkmark				
	V_2				\checkmark		
	U ₃	\checkmark					

Constraining NP in $b \to c \ell \overline{\nu}$ using $B \to D^{(*)} \ell \overline{\nu}$

Lattice tensor FFs are now available for $B \to D^* \ell \bar{\nu}$ and $B_s \to D_s^* \ell \bar{\nu}$ from HPQCD [2304.03137]:

Constraining NP in $b \to c \ell \overline{\nu}$ using $B \to D^{(*)} \ell \overline{\nu}$

Constraints for Wilson coefficients using just $B \to D^{(*)} \ell \bar{\nu}$ with e.g. $\ell = e$ are all consistent with the SM [2304.03137]

Experimental Outlook for $b \to c \ell \bar{\nu}$

Optimistically, uncertainties of *R*-ratio measurements may reach percent level

- Commensurate uncertainties on the theory side would require treatment of QED effects
- Most recent lattice only results give $R(J/\psi) = 0.2582(38)$, $R(D_s^*) = 0.265(9)$, much more precise than experiments are likely to obtain soon
- Differential decay rate data from Belle II will allow for further tests of angular asymmetries

2031

2032

 $b \rightarrow s\ell^+\ell^-$

1-loop in the Standard Model

$$\rightarrow H_{\text{eff}} = -\frac{4}{\sqrt{2}} G_F \left[V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu) + V_{ub} V_{us}^* \times \dots \right]$$
$$\mu = m_b$$

Main contributions from H_{eff} are from local hadronic operators

 \rightarrow 'local' FFs:

 $\langle M(p') | O_i^{\text{had}} | B(p) \rangle \equiv F_{\lambda}^{B \to M}(q^2) S_{\lambda}(p', p)$

Heavy Quark Flavour Physics - Judd Harrison

$$b \rightarrow s\ell^+\ell^-$$

Non-local contributions from O_1^c , O_2^c coupling to J/ψ , $\psi(2S)$, as well as on-shell states coupling to γ from O_7 (e.g. ρ , ω, ϕ)

$$O_1^c = \bar{s}_L \gamma^\mu c_L \, \bar{c}_L \gamma_\mu b_L, \quad O_2^c = \bar{s}_L^j \gamma^\mu c_L^i \, \bar{c}_L^i \gamma_\mu b_L^j$$

 \rightarrow 'non-local' FFs:

 $H_{\lambda}^{B \to M}(q^{2}) S_{\lambda}(p', p)$ $\equiv \langle M(p') | T\{j_{\mu}^{em}, \sum_{i=1}^{2} C_{i} O_{i}^{c} + \sum_{i=3}^{6} C_{i} O_{i} + C_{8} O_{8}\} | B(p) \rangle$

These non-local contributions are not well understood close to resonances

- Dispersive bound for non-local FFs give model independent constraints, control truncation error, include data for e.g. $B \rightarrow K J/\psi \ell^+ \ell^-$ [2011.09813, 2206.03797]
- Usual solution: exclude veto regions with q^2 around $M_{\rm res}^2$
- Local FFs still dominate uncertainties

$b \rightarrow s \ell^+ \ell^-$

Lattice calculations for $b \rightarrow s$ FFs are less advanced than for $b \rightarrow c$

Fermilab-MILC: 2+1 asqtad, Wilson-clover b

HPQCD: 2+1+1 HISQ, heavy-HISQ b

	$h_{\pm}(w)$	$h_T(w)$	$h_{A_{1,2,3},V}(w)$	$h_{T_{1,2,3}}(w)$
$B \to K^{(*)}$	✓ [2207.12468]✓ [1509.06235]	✓ [2207.12468]✓ [1509.06235]	✓ [1310.3722*]	✓ [1310.3722*]
$B_s \to \phi$			✓ [1310.3722*]	✓ [1310.3722*]
$B_c \rightarrow D_s^{(*)}$	✓ [2108.11242]	✓ [2108.11242]		

* 2+1 asqtad, NRQCD *b* quarks

Note that the HPQCD calculation of the $B \rightarrow K$ SM+Tensor FFs [2207.12468] also included SM+Tensor $D \rightarrow K$ FFs. The Fermilab-MILC collaboration has also computed the $D \rightarrow \pi$, $D \rightarrow K$ and $D_s \rightarrow K$ SM FFs using 2+1+1 HISQ for all quarks [2212.12648], with work in progress to extend this calculation to the B.

$B \to K \ell^+ \ell^-$ [2207.12468]

W. G. Parrott, C. Bouchard, and C. T. H. Davies: 2+1+1 HISQ, heavy-HISQ b

BCL parameterisation:
$$z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}, \quad f^Y(q^2) \sim L_\chi \times P\left(q^2, M_{b\bar{s}}^{\text{res}_Y 2}\right) \times \sum a_n^Y\left(\frac{\Lambda_{\text{QCD}}}{M_H}, am_h, a\Lambda_{\text{QCD}}\right) z^n$$

$B \to K \ell^+ \ell^-$ [2207.12468]

W. G. Parrott, C. Bouchard, and C. T. H. Davies: 2+1+1 HISQ, heavy-HISQ b

$B \to K \ell^+ \ell^-$ [2207.12468]

W. G. Parrott, C. Bouchard, and C. T. H. Davies: 2+1+1 HISQ, heavy-HISQ b

$B \to K \ell^+ \ell^-$ [2207.13371]

W. G. Parrott, C. Bouchard, and C. T. H. Davies: 2+1+1 HISQ, heavy-HISQ b

• Integrating over allowed regions gives tension at the level of $\approx 3 - 5\sigma$ with recent experimental measurements.

- $B^+ \rightarrow K^+ \ell^+ \ell^-$ differential branching fraction shows clear discrepancy with experimental measurements [2207.13371]
- Similar situation for $B^0 \to K^0 \ell^+ \ell^-$ and $B^- \to K^- \ell^+ \ell^-$ modes.

 $B \to K^* \ell^+ \ell^-, B_s \to \phi \ell^+ \ell^-$

Dispersive bound for local and non-local FFs combined with older lattice results and LCSR [2206.03797]

• Similar discrepancy to $B \rightarrow K$ in both cases.

 $B \to K^* \ell^+ \ell^-, B_s \to \phi \ell^+ \ell^-$

Similar level of discrepancy for P'_5

$$P_5'(q^2) = \frac{S_5(q^2)}{\sqrt{F_L(q^2)(1 - F_L(q^2))}}$$

$$S_5(q^2) = -\frac{4}{3} \left[\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} - \int_{0}^{\frac{\pi}{2}} - \int_{\frac{3\pi}{2}}^{2\pi} d\phi \left[\int_{0}^{1} - \int_{-1}^{0} d\cos(\theta_K) d\phi \right] \right] d\cos(\theta_K) d\phi$$
$$\times \frac{d^3(\Gamma - \overline{\Gamma})}{dq^2 d\cos(\theta_K) d\phi} / \frac{d(\Gamma + \overline{\Gamma})}{dq^2}$$

$$F_L(q^2) = \frac{d\Gamma^{\lambda_{K^*}=0}}{dq^2} / \frac{d\Gamma}{dq^2}$$

$b \rightarrow s \ell^+ \ell^-$: BSM analysis

Combine experimental results with LQCD FFs with LCSR, improved dispersive bounds to constrain C_9 and C_{10} [2206.03797]

 $B \to K \ \mu^+\mu^-, B_s \to \mu^+\mu^ B \to K^*\mu^+\mu^ B \to \phi\mu^+\mu^-$

 \rightarrow Look forward to simultaneous BSM analysis using new LQCD (e.g. W. G. Parrott et al.) and new experimental results in these channels

(this figure does not include HPQCD `22 $B \rightarrow K$ or CMS $B_s \rightarrow \mu^+\mu^-$ [2212.10311], bounds for each channel computed separately)

$b \rightarrow s \ell^+ \ell^-$: BSM analysis - LFU

New measurement of $R_{K^{(*)}}$ by LHCb asks if deviations from SM seen in $b \rightarrow s\mu^+\mu^-$ can be explained consistently.

- Best performing 1D LFU NP case, C_9^{univ} [2212.10497]
- QCD effects could contribute → understanding non-local contributions very important

$b ightarrow u \ell \overline{ u}$

Form factors much more expensive computationally due to light quarks, especially for physical pions

Fermilab-MILC: 2+1 asqtad, Wilson-clover *b* and *c* quarks

HPQCD: 2+1+1 HISQ, heavy-HISQ b

JLQCD: 2+1 Möbius domain-wall, Möbius domain-wall b

	$h_{\pm}(w)$	$h_T(w)$	$h_{A_{1,2,3},V}(w)$	$h_{T_{1,2,3}}(w)$
$B \to \pi/B \to \rho$	✓ [2203.04938][1503.07839]			
$B_s \to K^{(*)}$	✓[1901.02561]			
$B_c \rightarrow D^{(*)}$	✓ [2108.11242]	✓ [2108.11242]		

$B ightarrow \pi \ell ar{ u}$ [2203.04938]

Recent JLQCD calculation of $B \rightarrow \pi$ form factors

Good agreement between lattice shape parameters and experimental measurements

$B ightarrow \pi \ell ar{ u}$ [2203.04938]

 $B \rightarrow \pi \ell \bar{\nu}$ provides a means to compute the CKM matrix element $|V_{ub}|$

- JLQCD find $V_{cb} = 3.93 \pm 0.41 \times 10^{-3}$
- Work in progress by both HPQCD and Fermilab-MILC collaborations

Also offers a test of LFU through the ratio $R(\pi) = \Gamma(B \to \pi \tau \bar{\nu}_{\tau}) / \Gamma(B \to \pi \ell \bar{\nu}_{\ell})$, expected to be measured by Belle II with precision of $\approx 14\%$

$B ightarrow ho(ightarrow \pi\pi) \ell \overline{ u}$ [2212.08833]

 $B \rightarrow \rho(\rightarrow \pi \pi) \ell \bar{\nu}$ provides a complementary determination of the CKM matrix element $|V_{ub}|$

- Challenging on the lattice, due to ρ resonance.
- 2212.08833 follows the approach of Briceño, Hansen, and Walker-Loud (e.g. [1406.5965]) to compute the transition amplitude, <u>V</u>T <u>ak</u>.
- Currently, only preliminary results for the vector current at a single lattice spacing.
- Nevertheless, demonstrates feasibility of such calculations
- Experimental data available from BaBar, Belle and recently Belle II [2211.15270] but hadronic matrix elements not yet well known.

$B_S \rightarrow K \ell \bar{\nu}$ [2203.04938]

Work in progress by Fermilab-MILC on $B_s \rightarrow K$ using 2+1+1 HISQ gauge configurations and HISQ heavy quarks, e.g

Summary

 $b\to c\ell\bar\nu$

- New $B_{(s)} \rightarrow D^*_{(s)} \ell \bar{\nu}$ SM+Tensor FFs from HPQCD, $B \rightarrow D^* \ell \bar{\nu}$ SM FFs from JLQCD, WIP by Fermilab-MILC on $B_{(s)} \rightarrow D^{(*)}_{(s)} \ell \bar{\nu}$
- Lattice $R(D^*)$ seems to disagree with HQET predictions, some discrepancy with semimuonic shape and asymmetry measurements from Belle and Belle II
- Need to look carefully at ingredients of lattice calculations
- New experimental results expected in $B \rightarrow D^* \ell \bar{\nu}$ and other channels soon

 $b\to s\ell^+\ell^-$

- Recent SM+Tensor FFs from HPQCD confirm tension seen between theory and experiment in branching ratios in B \rightarrow K [2207.12468, 2207.13371], WIP also at Fermilab-MILC on B \rightarrow K
- LHCb R_K(*) [2212.09153] highlights importance of understanding non-local contributions -> look to new dispersive bound calculations [2011.09813, 2206.03797]
- WIP on $B_s \rightarrow \phi$ and $B \rightarrow K^*$ FFs at HPQCD will clarify situation in these channels where current discrepancy is based on older nonrelativistic calculations

 $b \to u\ell \bar{\nu}$

- $B \rightarrow \pi \ell \bar{\nu}$ SM FFs from JLQCD in agreement with experimentally measured shape, give exclusive V_{cb} compatible with both inclusive and exclusive averages [2203.04938]
- WIP by Leskovec et al. on $B \to \rho(\to \pi \pi) \ell \bar{\nu}$ [2212.08833], treating the ρ resonance using the Lellouch-Lüscher method
- WIP by HPQCD on $B \rightarrow \pi \ell \bar{\nu}$
- WIP by Fermilab-MILC on $B_S \rightarrow K \ell \bar{\nu}$ and $B \rightarrow \pi \ell \bar{\nu}$

Thanks for listening!

Backup Slides

$B^0 \rightarrow D^{*-} \ell^+ \nu$ Belle II Preliminary [2305.10746]

Recently, Belle II reported preliminary results for a measurement of $|V_{cb}|$ using 189fb^{-1} of e^+e^- collisions at the $\Upsilon(4S)$ resonance and 18fb^{-1} of collisions 60 MeV below the $\Upsilon(4S)$ resonance.

Using LQCD for the normalisation at zero recoil:

$$|V_{cb}|_{BGL} = 40.6 \pm 0.3^{stat} \pm 1.0^{syst} \pm 0.6^{theo} \times 10^{-3}.$$

