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1 Introduction

Motivation

• 4.2σ discrepancy between g − 2 experiments and
White Paper SM prediction

• 2.1σ tension between R-ratio and BMWc
lattice-QCD for HVP

• increases to 3.7σ for intermediate window

• recent results from ETMC, Mainz, RBC/UKQCD
confirm BMWc intermediate window

• motivates ongoing scrutiny of R-ratio results

• new e+e− → π+π− data from CMD-3 agree with
lattice, incompatible with previous experiments
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1 Introduction

Tension between R-ratio and lattice
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2 Dispersive representation of the pion VFF

Two-pion contribution to HVP

• ππ contribution amounts to more than 70% of HVP
contribution

• responsible for a similar fraction of HVP uncertainty

• can be expressed in terms of pion vector form
factor ⇒ constraints from analyticity and unitarity
→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006
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2 Dispersive representation of the pion VFF

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

1 ππ contribution to HVP—pion vector form factor (VFF)

2 pion VFF—ππ scattering

3 ππ scattering—ππ scattering

: σ(e+e− → π+π−) ∝ |F V
π (s)|2

analyticity ⇒ dispersion relation for HVP contribution

8



2 Dispersive representation of the pion VFF

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

1 ππ contribution to HVP—pion vector form factor (VFF)

2 pion VFF—ππ scattering

3 ππ scattering—ππ scattering

= + . . . : F V
π (s) = |F V

π (s)|eiδ11(s)+...

analyticity ⇒ dispersion relation for pion VFF
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2 Dispersive representation of the pion VFF

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

1 ππ contribution to HVP—pion vector form factor (VFF)

2 pion VFF—ππ scattering

3 ππ scattering—ππ scattering

= + . . .

analyticity, crossing, PW expansion ⇒ Roy equations
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2 Dispersive representation of the pion VFF

Dispersive representation of pion VFF
→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

= + + . . .

F V
π (s) = Ω1

1(s)×Gω(s)×GN
in(s)

• Omnès function with elastic ππ-scattering P -wave
phase shift δ11(s) as input:

Ω1
1(s) = exp

{
s

π

∫ ∞

4M2
π

ds′
δ11(s

′)

s′(s′ − s)

}
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2 Dispersive representation of the pion VFF

Dispersive representation of pion VFF
→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

= + + . . .

F V
π (s) = Ω1

1(s)×Gω(s)×GN
in(s)

• isospin-breaking 3π intermediate state: negligible
apart from ω resonance (ρ–ω interference effect)

Gω(s) = 1 +
s

π

∫ ∞

9M2
π

ds′
Imgω(s

′)
s′(s′ − s)


1− 9M2

π
s′

1− 9M2
π

M2
ω




4

,

gω(s) = 1 + ϵω
s

(Mω − i
2Γω)2 − s

ϵω: a priori a free real parameter
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2 Dispersive representation of the pion VFF

Dispersive representation of pion VFF
→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

= + + . . .

F V
π (s) = Ω1

1(s)×Gω(s)×GN
in(s)

• heavier intermediate states: 4π (mainly π0ω), K̄K, . . .

• described in terms of a conformal polynomial with
cut starting at π0ω threshold

GN
in(s) = 1 +

N∑

k=1

ck(z
k(s)− zk(0))

• correct P -wave threshold behavior imposed
9



2 Dispersive representation of the pion VFF

Input and systematic uncertainties
• elastic ππ-scattering P -wave phase shift δ11(s) from

Roy-equation analysis, including uncertainties
→ Ananthanarayan et al., 2001; Caprini et al., 2012

• high-energy continuation of phase shift above validity
of Roy equations

• ω width

• systematics in conformal polynomial: order N , one
mapping parameter
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2 Dispersive representation of the pion VFF

Free fit parameters
• value of the elastic ππ-scattering P -wave phase shift
δ11 at two points (0.8 GeV and 1.15 GeV): number of
free parameters dictated by Roy equations

• ρ–ω mixing parameter ϵω
• ω mass

• energy rescaling for the experimental input, which
allows for a calibration uncertainty

• N − 1 coefficients in the conformal polynomial
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2 Dispersive representation of the pion VFF

VFF fit to the following data
• time-like e+e− cross-section data

• space-like VFF data from NA7

• Eidelman–Łukaszuk bound on inelastic phase:
→ Eidelman, Łukaszuk, 2004

• iterative fit routine including full experimental
covariance matrices and avoiding D’Agostini bias
→ D’Agostini, 1994; Ball et al. (NNPDF) 2010
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2 Dispersive representation of the pion VFF

Updated results for aHVP,ππ
µ below 1 GeV

→ Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032

χ2/dof p-value Mω [MeV] 103 × Re(ϵω)

SND06 1.40 5.3% 781.49(32)(2) 2.03(5)(2)

CMD-2 1.18 14% 781.98(29)(1) 1.88(6)(2)

BaBar 1.14 5.7% 781.86(14)(1) 2.04(3)(2)

KLOE 1.36 7.4× 10−4 781.82(17)(4) 1.97(4)(2)

KLOE′′ 1.20 3.1% 781.81(16)(3) 1.98(4)(1)

BESIII 1.12 25% 782.18(51)(7) 2.01(19)(9)

SND20 2.93 3.3× 10−7 781.79(30)(6) 2.04(6)(3)

all w/o SND20 1.23 3.0× 10−5 781.69(9)(3) 2.02(2)(3)
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2 Dispersive representation of the pion VFF

Results for aHVP,ππ
µ below 1 GeV

→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006
Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032
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2 Dispersive representation of the pion VFF

More tensions: CMD-3
→ F. Ignatov et al. (CMD-3), 2302.08834 [hep-ex]
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3 Changes in the ππ cross section?

Tension with lattice QCD
→ Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073

• implications of changing HVP?

• modifications at high energies affect hadronic
running of αeff

QED ⇒ clash with global EW fits
→ Passera, Marciano, Sirlin (2008), Crivellin, Hoferichter, Manzari, Montull (2020),

Keshavarzi, Marciano, Passera, Sirlin (2020), Malaescu, Schott (2020)

• lattice studies point at region < 2GeV

• ππ channel dominates

• relative changes in other channels would need to be
huge
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3 Changes in the ππ cross section?

Tension with lattice QCD
→ Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073

• force a different HVP contribution in VFF fits by
including “lattice” datum with tiny uncertainty

• three different scenarios:
• “low-energy” physics: ππ phase shifts
• “high-energy” physics: inelastic effects, ck
• all parameters free

• study effects on pion charge radius, hadronic running
of αeff

QED, phase shifts, cross sections
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3 Changes in the ππ cross section?

Modifying aππµ |≤1GeV

→ Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073

• “low-energy” scenario requires large local changes in
the cross section in the ρ region

• “high-energy” scenario has an impact on pion
charge radius and the space-like VFF ⇒ chance for
independent lattice-QCD checks
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3 Changes in the ππ cross section?

Modifying aππµ |≤1GeV

→ Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073
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3 Changes in the ππ cross section?

Modifying aππµ |≤1GeV

→ Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073
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3 Changes in the ππ cross section?

Modifying aππµ |≤1GeV

→ Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073
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3 Changes in the ππ cross section?

Modifying aππµ |≤1GeV

→ Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073
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3 Changes in the ππ cross section?

Results for aHVP,ππ
µ below 1 GeV
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BMWc - 197.7

Assumption: suppose all changes occur in ππ channel < 1 GeV

⇒ atotalµ [WP20]− a2π,<1 GeV
µ [WP20] = 197.7× 10−10
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3 Changes in the ππ cross section?

CMD-3 vs. all the rest

discrepancy aππ
µ

∣∣
[0.60,0.88] GeV aππ

µ

∣∣
≤1 GeV int window

SND06 1.8σ 1.7σ 1.7σ

CMD-2 2.3σ 2.0σ 2.1σ

BaBar 3.3σ 2.9σ 3.1σ

KLOE′′ 5.6σ 4.8σ 5.4σ

BESIII 3.0σ 2.8σ 3.1σ

SND20 2.2σ 2.1σ 2.2σ

Combination 4.2σ (6.1σ) 3.7σ (5.0σ) 3.8σ (5.7σ)

(discrepancies in brackets exclude systematic effect due to BaBar–KLOE tension)

• p-value of fit to CMD-3: 20%

• ππ phase shifts reasonable, main effect in conformal polynomial

• effect on charge radius as expected for rather uniform
cross-section shift
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4 Isospin-breaking effects ρ–ω mixing

Resonantly enhanced isospin-breaking effects
• with the given approximations, ϵω is real by

construction

• however, additional radiative corrections can be
effectively mapped onto a phase in ϵω

• additional channels in unitarity relation:

= + + + . . .
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4 Isospin-breaking effects ρ–ω mixing

Resonantly enhanced isospin-breaking effects
• with the given approximations, ϵω is real by

construction

• however, additional radiative corrections can be
effectively mapped onto a phase in ϵω

• e.g., dominant π0γ channel can be implemented as

Gω(s) = 1 +
s

π

∫ ∞

9M2
π

ds′
Reϵω

s′(s′ − s)
Im

[
s′

(Mω − i
2
Γω)2 − s′

]1− 9M2
π

s′

1− 9M2
π

M2
ω


4

+
s

π

∫ ∞

M2
π0

ds′
Imϵω

s′(s′ − s)
Re

[
s′

(Mω − i
2
Γω)2 − s′

]1− M2
π0

s′

1−
M2

π0

M2
ω


3

• resonance enhancement: details of implementation
irrelevant (similar results with complex ϵω in gω(s))
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4 Isospin-breaking effects ρ–ω mixing

Effective phase in ρ–ω mixing parameter
• narrow-resonance estimate:

Imϵω ≃
√

Γ[ω → π0γ]Γ[ρ → π0γ]

3MV

• analogous relation for other intermediate states

• estimate leads to phases of 2.8◦(π0γ), 0.4◦(π+π−γ),
0.2◦(ηγ), 0.02◦(π0π0γ)

⇒ expect a phase arg(ϵω) ≈ 3.5(1.0)◦
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4 Isospin-breaking effects ρ–ω mixing

Updated results for aHVP,ππ
µ below 1 GeV

→ Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032

χ2/dof p-value Mω [MeV] 103 × Re(ϵω)

SND06 1.40 5.3% 781.49(32)(2) 2.03(5)(2)

CMD-2 1.18 14% 781.98(29)(1) 1.88(6)(2)

BaBar 1.14 5.7% 781.86(14)(1) 2.04(3)(2)

KLOE 1.36 7.4× 10−4 781.82(17)(4) 1.97(4)(2)

KLOE′′ 1.20 3.1% 781.81(16)(3) 1.98(4)(1)

BESIII 1.12 25% 782.18(51)(7) 2.01(19)(9)

SND20 2.93 3.3× 10−7 781.79(30)(6) 2.04(6)(3)

all w/o SND20 1.23 3.0× 10−5 781.69(9)(3) 2.02(2)(3)

29



4 Isospin-breaking effects ρ–ω mixing

Including phase in ϵω
→ Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032

χ2/dof p-value Mω [MeV] 103 × Re(ϵω) arg(ϵω) [◦]

SND06 1.08 35% 782.11(32)(2) 1.98(4)(2) 8.5(2.3)(0.3)

CMD-2 1.01 45% 782.64(33)(4) 1.85(6)(4) 11.4(3.1)(1.0)

BaBar 1.14 5.5% 781.93(18)(4) 2.03(4)(1) 1.3(1.9)(0.7)

KLOE 1.27 6.7× 10−3 782.50(25)(6) 1.94(5)(2) 6.8(1.8)(0.5)

KLOE′′ 1.13 10% 782.42(23)(5) 1.95(4)(2) 6.1(1.7)(0.6)

BESIII 1.02 44% 783.05(60)(2) 1.99(19)(7) 17.6(6.9)(1.2)

SND20 1.87 4.1× 10−3 782.37(28)(6) 2.02(5)(2) 10.1(2.4)(1.4)

all w/o SND20 1.19 4.8× 10−4 782.09(12)(4) 1.97(2)(2) 4.5(9)(8)
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4 Isospin-breaking effects ρ–ω mixing

Results for arg(ϵω)
→ Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032
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4 Isospin-breaking effects ρ–ω mixing

Extraction of IB contribution due to ρ–ω mixing
→ Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032

• extracted from full result vs. HVP integral with ϵω = 0

• similar size as FSR contribution (sQED):

arg(ϵω) 0◦ 4.5(1.2)◦

1010 × aρ–ω
µ 4.37(4)(7) 3.68(14)(10)

1010 × aππ,FSR
µ 4.23(1)(2) 4.24(1)(2)

• since we are considering 1-photon-irreducible HVP,
entire effect to be assigned to O(mu −md)

→ thanks to Pablo Sanchez-Puertas for pointing this out
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4 Isospin-breaking effects Radiative corrections

Re-examination of RCs to e+e− → hadrons
• central discussion item at “5th Workstop / Thinkstart:

RC and MC tools for Strong 2020” (Zurich University)

• aiming at NNLO for leptonic part and improvement of
structure-dependent NLO effects

• employing dispersion relations for radiative
corrections to F V

π

→ G. Colangelo, M. Cottini, J. Monnard, J. Ruiz de Elvira, work in progress

• scan experiments rely on MCGPJ, ISR experiments
on Phokhara: only one MC generator in each case

• Phokhara: FSR modeled by sQED × pion VFF
outside loop integrals + resonance models

33



4 Isospin-breaking effects Radiative corrections

Forward-backward asymmetry

Intro AFB RC for ⇡⇡ ! ⇡⇡ RC for e+e� ! ⇡+⇡� Conclusions

Calculation of �virt in the 1⇡-exchange approximation

I cut the diagrams in the t (or u) channel

I represent the subamplitude e+e� ! ⇡+⇡� dispersively

F V
⇡ (s)

s
=

1
s � m2

�

� 1
⇡

Z 1

4M2
⇡

ds0 ImF V
⇡ (s0)
s0

1
s � s0

I which leads to GC, Hoferichter, Monnard, Ruiz de Elvira (22)

�virt = �̄virt
�
m2

� , m2
�

�
� 1

⇡

Z 1

4M2
⇡

ds0 ImF V
⇡ (s0)
s0

⇥
�̄virt
�
s0, m2

�

�
+ �̄virt

�
m2

� , s0�⇤

+
1
⇡

Z 1

4M2
⇡

ds0 ImF V
⇡ (s0)
s0

1
⇡

Z 1

4M2
⇡

ds00 ImF V
⇡ (s00)
s00 �̄virt(s0, s00),

→ talk by G. Colangelo at UZH “WorkStop”
Intro AFB RC for ⇡⇡ ! ⇡⇡ RC for e+e� ! ⇡+⇡� Conclusions

Numerical analysis GC, Hoferichter, Monnard, Ruiz de Elvira (22)
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GVMD describes well preliminary CMD3 data Ignatov, Lee (22)

 5 June 2023  Workstop/Thinkstart RadioMC, Zurich

Charge asymmetry in e+e- -> π+π-Charge asymmetry in e+e- -> π+π-
A = (N

θ < π/2
 - N

θ > π/2
)/N Relative to GVMD prediction

GVMD model

Dispersive F
π
 

Conventional sQED approach gives ~ 1% inconsistency
The theoretical model within GVMD was introduced,
describes well the CMD-3 data R.Lee et al.,  Phys.Lett.B 833 (2022) 137283 

was confirmed by calculation in dispersive formalism
               M.Hoferichter et al., JHEP 08 (2022) 295 

π+π-: <δA> = -0.029 ± 0.023 %
e+e-: <δA> = -0.060 ± 0.026 %

 with BaBaYaga@NLO
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Average at √s = 0.7-0.82 GeV:
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5 Window quantities

Some insights from the window quantities
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• smooth window weight functions in Euclidean time

→ Blum et al. [RBC/UKQCD], PRL 121 (2018) 022003

• total discrepancy:

aµ[BMWc]− aµ[WP20] = 14.4(6.8)× 10−10

• intermediate window: → Colangelo et al., PLB 833 (2022) 137313

aint
µ [BMWc]− aint

µ [e+e−] = 7.3(2.0)× 10−10
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5 Window quantities

Some insights from the window quantities
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• using form of weight functions:

at least ∼ 40% from above 1 GeV

• assumptions:

• rather uniform shifts in low-energy ππ region
• no significant negative shifts
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5 Window quantities

Data-driven evaluation of window quantities
→ Colangelo et al., PLB 833 (2022) 137313

• standard windows: [0, 0.4] fm, [0.4, 1.0] fm, [1.0,∞) fm
with ∆ = 0.15 fm

• additional windows: cuts at
{0.1, 0.4, 0.7, 1.0, 1.3, 1.6} fm

• data-driven evaluation based on merging of KNT
and CHHKS

• systematic effect due to BaBar vs. KLOE tension
close to the WP estimate

• full covariance matrices for windows provided
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5 Window quantities

Results for intermediate window

220 225 230 235 240

1010 × aHVP,win
µ

R-ratio

RBC/UKQCD 2018

BMWc 2020

ETMC 2021

Mainz/CLS 2022

ETMC 2022

RBC/UKQCD 2022

R-ratio result: → Colangelo et al., PLB 833 (2022) 137313
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5 Window quantities

Additional Euclidean-time windows
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Figure 2: Analog of Fig. 1 for a finer decomposition (� = 0.15 fm). The colors match the corresponding weight functions in Euclidean time (left) and center-of-mass
energy (right).

Eq. (8). The ones proposed in Ref. [24]

⇥SD(t) = 1 � ⇥(t, t0,�) ,
⇥win(t) = ⇥(t, t0,�) � ⇥(t, t1,�) ,
⇥LD(t) = ⇥(t, t1,�) ,

⇥(t, t0,�) =
1
2

✓
1 + tanh

t � t0

�

◆
, (10)

were designed to separate short-distance, intermediate, and
long-distance contributions, respectively, with parameters

t0 = 0.4 fm , t1 = 1.0 fm , � = 0.15 fm . (11)

The isospin-symmetric quark-connected light-quark contribu-
tion of the intermediate window for these parameters has now
been calculated by several lattice collaborations at high preci-
sion [24, 29, 36, 97, 105–107]. Some collaborations have also
computed the quark-disconnected and isospin-breaking correc-
tions [24, 36]. The corresponding weight functions ⇥̃(s) in
Eq. (6) are obtained as

⇥̃(s) =
3s5/2

8m4
µK̂(s)

Z 1

0
dt⇥(t)e�t

p
s
Z 1

0
ds0 w

✓ s0

m2
µ

◆

⇥
 
t2 � 4

s0
sin2 t

p
s0

2

!
,

w(r) =

h
r + 2 � pr(r + 4)

i2

p
r(r + 4)

. (12)

Results for the window parameters (11) are collected in Ta-
ble 1, including comparison numbers from e+e� data obtained
from Refs. [7–9, 11] using the merging procedure from Ref. [1].
We have not included new data [108–110] that became avail-
able after these references nor Refs. [111, 112] for the ⇡0� and
K̄K channel, respectively, given that the overall impact will be
small and subtleties in the inclusion into global analyses first
need to be assessed in each method separately. The e+e� ! 2⇡
data from Ref. [74] (including the corrected covariance matrix),
however, have been added to the analysis of Ref. [8], which en-
sures a realistic estimate of the systematic tension between the

2⇡  1.0 GeV 3⇡  1.8 GeV All channels

[0, 0.1]fm 0.83(0)(1) 0.18(0)(0) 11.43(9)

[0.1, 0.4]fm 12.89(5)(11) 2.37(4)(2) 57.01(41)

[0.4, 0.7]fm 51.02(19)(41) 7.69(14)(6) 102.54(62)

[0.7, 1.0]fm 87.28(31)(65) 10.82(21)(7) 126.89(79)

[1.0, 1.3]fm 95.31(34)(65) 9.84(20)(5) 120.51(77)

[1.3, 1.6]fm 80.88(30)(50) 6.97(15)(2) 95.01(60)

[1.6,1)fm 166.08(80)(69) 8.53(19)(2) 179.64(1.08)

Total 494.30(1.90)(3.00) 46.39(94)(24) 693.02(3.86)

Table 2: Window quantities for HVP, based on Refs. [7–9, 11], using the merg-
ing procedure from Ref. [1] and the window parameters shown in Fig. 2. The
first and second errors for the 2⇡ and 3⇡ channels refer to the experimental and
additional systematic uncertainties, respectively, as described in the main text.
All numbers in units of 10�10.

BaBar and KLOE data close to the one included in Refs. [1, 10].
With these numbers, the global 2.1� tension between Ref. [36]
and e+e� data increases to 3.7� in the intermediate window.
The result from Ref. [24] lies 1.2� above e+e� data and 2.3�
below Ref. [36].

Table 1 also shows the decomposition for the two leading
hadronic channels, indicating how their contributions are dis-
tributed over the three windows, as well as the extent to which
the 2⇡ channel dominates the long-distance window. As can
be seen from Fig. 1, the sharp separation into short-distance,
intermediate, and long-distance weight functions in Euclidean
time becomes far more ambiguous in center-of-mass energy,
with significant overlap of the windows and a long tail of the
intermediate weight function. Accordingly, this window still
receives the dominant contribution (⇠ 60%) from the 2⇡ chan-
nel (to be compared to 71% for the total HVP), but a significant
part comes from higher-multiplicity channels and the inclusive
region above (1.8–2) GeV. In contrast, the long-distance win-
dow is strongly dominated by the 2⇡ (87%) and 3⇡ (6%) chan-
nels.
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5 Window quantities

Localization in time-like region possible?
→ see also talk by D. Boito

• better localization in time-like region could be
achieved by taking linear combinations of
Euclidean-time windows

• typically leads to large cancellations in
Euclidean-time integral

• reflecting ill-posed inverse Laplace transform

• assessing usefulness requires knowledge of full
covariances

• combinations dominated by exclusive hadronic
channels suffer from similar problems
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5 Window quantities

Localization in time-like region possible?
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Figure 3: Example for a linear combination of our modified windows. The better localization in center-of-mass energy (right) requires severe cancellations between
the di↵erent windows, leading to strong oscillations in Euclidean time (left). Note the di↵erent scales of the two plots. The color-coding is as in Fig. 2.

1 0.901521 0.471482 0.194165 0.120959 0.099851 0.076151

1 0.758581 0.469941 0.364565 0.324456 0.256454

1 0.909295 0.827037 0.780636 0.641164

1 0.982477 0.958442 0.813646

1 0.993619 0.871170

1 0.911101

1

Table 3: Final correlations among the window quantities given in Table 2 (all
channels). The correlations among the standard windows can be reconstructed
from this covariance matrix together with Table 2: ⇢SD, win = 0.566, ⇢SD, LD =

0.280, ⇢win, LD = 0.872.

3. Modified window parameters

More detailed information on the energy dependence can
be obtained starting from a finer decomposition in Euclidean
time [97]. In Fig. 2 we show a decomposition in which the in-
termediate window is cut in half and windows of the same time
di↵erence 0.3 fm (with � = 0.15 fm) are added in both direc-
tions. The overlap of the weight functions in center-of-mass
energy is substantial, but the main support of the windows still
di↵ers su�ciently such that conclusions on the energy depen-
dence of potential di↵erences between lattice and phenomeno-
logical evaluations should be possible. In particular, any trends
identified in the three-window scenario from Fig. 1 could be
scrutinized in this more detailed decomposition. For example,
if a more significant tension in the intermediate window com-
pared to the global integral were corroborated, the considera-
tion of the refined windows proposed here should allow one to
better locate the origin of the di↵erences.

Our results for these modified windows are given in Table 2.
In analogy to the breakdown in Table 1, we provide the separate
results for the 2⇡ and 3⇡ channels from center-of-mass energies
below 1.0 GeV and 1.8 GeV, respectively. In both cases, the un-
certainties already include systematic e↵ects as prescribed by
the merging procedure from Ref. [1]. The central values for the
2⇡ and 3⇡ channels are determined as the average of Ref. [11]
with Refs. [8, 9]. All experimental errors are carried over from

Ref. [11], as are the remaining contributions to the HVP in-
tegral. The systematic uncertainty in the 3⇡ channel is given
by half the di↵erence between Refs. [9, 11], whereas in the 2⇡
channel is obtained as half the di↵erence between fits without
the BaBar and without the KLOE data as in the implementation
of Ref. [8] (as the e↵ect is larger than the corresponding one in
Ref. [11]). In comparison to the full merging procedure from
Ref. [1], the main omissions in the present estimate concern the
e↵ect of interchannel correlations [6, 10] and an additional sys-
tematic uncertainty assigned for the inclusive region. Numer-
ically, however, these e↵ects are subleading and compensated
by a slightly larger value for the BaBar/KLOE tension, so that
our final result for the total HVP contribution comes out very
close to Ref. [1].

In view of the overlap of the weight functions, the uncertain-
ties of the window quantities derived in this way display signif-
icant correlations. To facilitate usage of our results (e.g., for the
construction of linear combinations), the final correlations are
provided in Table 3. The covariance matrix is derived starting
from Ref. [11] for the experimental uncertainties, to which the
covariance matrices corresponding to the systematic uncertain-
ties for the 2⇡ and 3⇡ channels (each 100% correlated among
the windows) are added. Once these correlations are taken into
account, sums of the modified windows reproduce the standard
ones as given in Table 1, as well as the total HVP contribution.
More details on the covariance matrices are provided in Ap-
pendix A.

From the perspective of lattice-QCD calculations, the ad-
ditional windows discussed in this work will exhibit a di↵er-
ent balance of statistical and systematic uncertainties compared
to the standard [0.4, 1.0] fm window. At shorter distances,
discretization errors may be enhanced, while at longer dis-
tances both statistical uncertainties and the size of needed finite-
volume corrections grow. As pointed out in Ref. [107], chiral
perturbation theory (�PT) describes the long-distance windows
much better: lattice calculations that rely on the applicability of
�PT [113–116] need to take this into account as well.

The splitting of the total integral over Euclidean time into
more window quantities has a predominantly illustrative pur-

4

a1 a2 a3 a4 a5 a6 a7 2⇡  1.0 GeV 3⇡  1.8 GeV All channels

⇥comb 0 0.276 �1.719 7.918 �19.743 19.579 0
308.78(1.33)(1.36) 15.30(37)(0) 325.15(1.93)

[95.0%] [4.7%] [100%]

“mostly 2⇡” 0 14.698 �11.994 �10.961 8.945 12.622 0 494.29(2.19)(1.67) 0.00(48)(43) 494.29(4.41)

“mostly 3⇡” 0 �13.847 8.657 10.177 1.081 �15.510 0 0.00(1.01)(1.63) 46.40(78)(58) 46.40(4.11)

“mostly rest” 0 2.838 2.709 �2.308 �3.002 3.866 0 0.00(11)(12) 0.00(6)(3) 152.31(1.61)

remainder 1 �2.689 1.629 4.091 �6.025 0.022 1 0.00(32)(18) 0.00(7)(6) 0.00(68)

Table 7: Linear combinations of window quantities for HVP, based on Refs. [7–9, 11], using the merging procedure from Ref. [1]. The row labeled by ⇥comb
corresponds to Fig. 3, the second panel gives the combinations shown in Fig. B.4. The first and second errors for the 2⇡ and 3⇡ channels refer to the experimental
and additional systematic uncertainties, respectively, as described in the main text. The numbers of the last three columns are in units of 10�10. Due to the large
correlations, the rounded input from Table 2 will lead to small deviations from the given numbers.
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Figure B.4: Examples for linear combinations of our modified windows that are dominated by contributions from di↵erent intermediate states. Although the com-
binations are chosen to minimize the amplitude of the Euclidean-time weight functions (left), one still observes rather strong oscillations, whereas the enhancement
of cross-section uncertainties due to the center-of-mass energy weight functions (right) remains moderate.
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C. Lehner, A. Portelli, and J. T. Tsang (RBC, UKQCD), Phys. Rev. Lett.
121, 022003 (2018), arXiv:1801.07224 [hep-lat].

[25] D. Giusti, V. Lubicz, G. Martinelli, F. Sanfilippo, and S. Simula, Phys.
Rev. D 99, 114502 (2019), arXiv:1901.10462 [hep-lat].

[26] E. Shintani and Y. Kuramashi (PACS), Phys. Rev. D 100, 034517 (2019),
arXiv:1902.00885 [hep-lat].

[27] C. T. H. Davies et al. (Fermilab Lattice, HPQCD, MILC), Phys. Rev. D
101, 034512 (2020), arXiv:1902.04223 [hep-lat].
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6 Conclusions

Conclusions

• unitarity/analyticity enable independent checks via
pion VFF and ⟨r2π⟩

• analysis of resonantly enhanced IB effects point at
systematic differences between data sets

• phase of mixing parameter
• ω mass

• no good fit to SND20 data set possible

• CMD-3: compatible with constraints from
unitarity/analyticity
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6 Conclusions

Conclusions

• BMWc result: window quantities and analyticity
constraints point at an effect ≲ 8× 10−10 below
1 GeV, ≳ 6× 10−10 above 1 GeV

• more detailed analysis might be possible with
additional windows and knowledge of correlations
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