Strategies to investigate tensions between *R*-ratio and lattice HVP computations

> Peter Stoffer Physik-Institut, University of Zurich and Paul Scherrer Institut

June 13, 2023

Lattice Gauge Theory Contributions to New Physics Searches IFT UAM/CSIC Madrid

1 Introduction

- 2 Dispersive representation of the pion VFF
- 3 Changes in the $\pi\pi$ cross section?
- 4 Isospin-breaking effects
- 5 Window quantities

Overview

- 2 Dispersive representation of the pion VFF
- 3 Changes in the $\pi\pi$ cross section?
- 4 Isospin-breaking effects
- 5 Window quantities

Motivation

Introduction

- 4.2σ discrepancy between g 2 experiments and White Paper SM prediction
- 2.1 σ tension between *R*-ratio and BMWc lattice-QCD for HVP
- increases to 3.7σ for intermediate window
- recent results from ETMC, Mainz, RBC/UKQCD confirm BMWc intermediate window
- motivates ongoing scrutiny of *R*-ratio results
- new e⁺e[−] → π⁺π[−] data from CMD-3 agree with lattice, incompatible with previous experiments

Introduction

muon g-2 discrepancy

Overview

2 Dispersive representation of the pion VFF

3 Changes in the $\pi\pi$ cross section?

- 4 Isospin-breaking effects
- 5 Window quantities

6 Conclusions

Two-pion contribution to HVP

- $\pi\pi$ contribution amounts to **more than** 70% of HVP contribution
- responsible for a similar fraction of HVP uncertainty
- can be expressed in terms of pion vector form factor ⇒ constraints from analyticity and unitarity

→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

- **1** $\pi\pi$ contribution to HVP—pion vector form factor (VFF)
- 2 pion VFF— $\pi\pi$ scattering
- **3** $\pi\pi$ scattering— $\pi\pi$ scattering

analyticity \Rightarrow dispersion relation for HVP contribution

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

- 1) $\pi\pi$ contribution to HVP—pion vector form factor (VFF)
- **2** pion VFF— $\pi\pi$ scattering

3 $\pi\pi$ scattering— $\pi\pi$ scattering

$$\cdots = \cdots = F_{\pi}^{V}(s) = |F_{\pi}^{V}(s)|e^{i\delta_{1}^{1}(s) + \dots}$$

analyticity \Rightarrow dispersion relation for pion VFF

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

- 1 $\pi\pi$ contribution to HVP—pion vector form factor (VFF)
- 2 pion VFF— $\pi\pi$ scattering
- **3** $\pi\pi$ scattering— $\pi\pi$ scattering

analyticity, crossing, PW expansion \Rightarrow Roy equations

Dispersive representation of pion VFF

 \rightarrow Colangelo, Hoferichter, Stoffer, JHEP **02** (2019) 006

Omnès function with elastic ππ-scattering *P*-wave phase shift δ₁¹(s) as input:

$$\Omega_1^1(s) = \exp\left\{\frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \frac{\delta_1^1(s')}{s'(s'-s)}\right\}$$

Dispersive representation of pion VFF

 \rightarrow Colangelo, Hoferichter, Stoffer, JHEP **02** (2019) 006

 isospin-breaking 3π intermediate state: negligible apart from ω resonance (ρ-ω interference effect)

$$\begin{aligned} G_{\omega}(s) &= 1 + \frac{s}{\pi} \int_{9M_{\pi}^2}^{\infty} ds' \frac{\mathrm{Im}g_{\omega}(s')}{s'(s'-s)} \left(\frac{1 - \frac{9M_{\pi}^2}{s'}}{1 - \frac{9M_{\pi}^2}{M_{\omega}^2}} \right)^4, \\ g_{\omega}(s) &= 1 + \epsilon_{\omega} \frac{s}{(M_{\omega} - \frac{i}{2}\Gamma_{\omega})^2 - s} \end{aligned}$$

 ϵ_{ω} : a priori a free **real** parameter

Dispersive representation of pion VFF

 \rightarrow Colangelo, Hoferichter, Stoffer, JHEP **02** (2019) 006

- heavier intermediate states: 4π (mainly $\pi^0\omega$), $\bar{K}K$, ...
- described in terms of a **conformal polynomial** with cut starting at $\pi^0 \omega$ threshold

$$G_{\rm in}^N(s) = 1 + \sum_{k=1}^N c_k(z^k(s) - z^k(0))$$

• correct *P*-wave threshold behavior imposed

Input and systematic uncertainties

• elastic $\pi\pi$ -scattering *P*-wave phase shift $\delta_1^1(s)$ from Roy-equation analysis, including uncertainties

 \rightarrow Ananthanarayan et al., 2001; Caprini et al., 2012

- high-energy continuation of phase shift above validity of Roy equations
- ω width
- systematics in conformal polynomial: order *N*, one mapping parameter

Free fit parameters

- value of the elastic $\pi\pi$ -scattering *P*-wave phase shift δ_1^1 at two points (0.8 GeV and 1.15 GeV): number of free parameters dictated by Roy equations
- ρ -- ω mixing parameter ϵ_{ω}
- ω mass
- energy rescaling for the experimental input, which allows for a calibration uncertainty
- N-1 coefficients in the conformal polynomial

VFF fit to the following data

- time-like e^+e^- cross-section data
- space-like VFF data from NA7
- Eidelman-Łukaszuk bound on inelastic phase:

→ Eidelman, Łukaszuk, 2004

 iterative fit routine including full experimental covariance matrices and avoiding D'Agostini bias

 \rightarrow D'Agostini, 1994; Ball et al. (NNPDF) 2010

Updated results for $a_{\mu}^{\mathrm{HVP},\pi\pi}$ below 1 GeV

 \rightarrow Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032

	$\chi^2/{ m dof}$	<i>p</i> -value	M_{ω} [MeV]	$10^3 \times \operatorname{Re}(\epsilon_{\omega})$
SND06	1.40	5.3%	781.49(32)(2)	2.03(5)(2)
CMD-2	1.18	14%	781.98(29)(1)	1.88(6)(2)
BaBar	1.14	5.7%	781.86(14)(1)	2.04(3)(2)
KLOE	1.36	7.4×10^{-4}	781.82(17)(4)	1.97(4)(2)
KLOE"	1.20	3.1%	781.81(16)(3)	1.98(4)(1)
BESIII	1.12	25%	782.18(51)(7)	2.01(19)(9)
SND20	2.93	3.3×10^{-7}	781.79(30)(6)	2.04(6)(3)
all w/o SND20	1.23	$3.0 imes 10^{-5}$	781.69(9)(3)	2.02(2)(3)

Results for $a_{\mu}^{\text{HVP},\pi\pi}$ below 1 GeV

 \rightarrow Colangelo, Hoferichter, Stoffer, JHEP **02** (2019) 006 Colangelo, Hoferichter, Kubis, Stoffer, JHEP **10** (2022) 032

More tensions: CMD-3

 \rightarrow F. Ignatov et al. (CMD-3), 2302.08834 [hep-ex]

Overview

2 Dispersive representation of the pion VFF

3 Changes in the $\pi\pi$ cross section?

- 4 Isospin-breaking effects
- 5 Window quantities

Tension with lattice QCD

 \rightarrow Colangelo, Hoferichter, Stoffer, PLB **814** (2021) 136073

- implications of changing HVP?
- modifications at high energies affect hadronic running of $\alpha_{\rm QED}^{\rm eff}$ \Rightarrow clash with global EW fits

 \rightarrow Passera, Marciano, Sirlin (2008), Crivellin, Hoferichter, Manzari, Montull (2020), Keshavarzi, Marciano, Passera, Sirlin (2020), Malaescu, Schott (2020)

- lattice studies point at region < 2 GeV
- ππ channel dominates
- relative changes in other channels would need to be huge

Tension with lattice QCD

- force a different HVP contribution in VFF fits by including "lattice" datum with tiny uncertainty
- three different scenarios:
 - "low-energy" physics: $\pi\pi$ phase shifts
 - "high-energy" physics: inelastic effects, ck
 - all parameters free
- study effects on pion charge radius, hadronic running of $\alpha_{\rm QED}^{\rm eff}$, phase shifts, cross sections

- "low-energy" scenario requires large local changes in the cross section in the ρ region
- "high-energy" scenario has an impact on pion charge radius and the space-like VFF ⇒ chance for independent lattice-QCD checks

→ Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073

Results for $a_{\mu}^{\text{HVP},\pi\pi}$ below 1 GeV

Assumption: suppose all changes occur in $\pi\pi$ channel < 1 GeV $\Rightarrow a_{\mu}^{\text{total}}[\text{WP20}] - a_{\mu}^{2\pi,<1 \text{ GeV}}[\text{WP20}] = 197.7 \times 10^{-10}$

CMD-3 vs. all the rest

discrepancy	$a_{\mu}^{\pi\pi} _{[0.60, 0.88]{ m GeV}}$	$a_{\mu}^{\pi\pi}\big _{\leq 1{\rm GeV}}$	int window
SND06	1.8σ	1.7σ	1.7σ
CMD-2	2.3σ	2.0σ	2.1σ
BaBar	3.3σ	2.9σ	3.1σ
KLOE"	5.6σ	4.8σ	5.4σ
BESIII	3.0σ	2.8σ	3.1σ
SND20	2.2σ	2.1σ	2.2σ
Combination	4.2σ (6.1 σ)	3.7σ (5.0 σ)	3.8σ (5.7 σ)

(discrepancies in brackets exclude systematic effect due to BaBar-KLOE tension)

- p-value of fit to CMD-3: 20%
- $\pi\pi$ phase shifts reasonable, main effect in conformal polynomial
- effect on charge radius as expected for rather uniform cross-section shift

Overview

4

Introduction

- 2 Dispersive representation of the pion VFF
- 3 Changes in the $\pi\pi$ cross section?
 - Isospin-breaking effects
 - $\rho \omega$ mixing
 - Radiative corrections
 - Window quantities

Resonantly enhanced isospin-breaking effects

- with the given approximations, ϵ_{ω} is real by construction
- however, additional radiative corrections can be effectively mapped onto a phase in *ϵ*_ω
- additional channels in unitarity relation:

Resonantly enhanced isospin-breaking effects

- with the given approximations, ϵ_{ω} is real by construction
- however, additional radiative corrections can be effectively mapped onto a phase in *ε*_ω
- e.g., dominant $\pi^0\gamma$ channel can be implemented as

$$\begin{aligned} G_{\omega}(s) &= 1 + \frac{s}{\pi} \int_{9M_{\pi}^2}^{\infty} ds' \frac{\operatorname{Re}\epsilon_{\omega}}{s'(s'-s)} \operatorname{Im}\left[\frac{s'}{(M_{\omega} - \frac{i}{2}\Gamma_{\omega})^2 - s'}\right] \left(\frac{1 - \frac{9M_{\pi}^2}{s'}}{1 - \frac{9M_{\pi}^2}{M_{\omega}^2}}\right)^4 \\ &+ \frac{s}{\pi} \int_{M_{\pi^0}^2}^{\infty} ds' \frac{\operatorname{Im}\epsilon_{\omega}}{s'(s'-s)} \operatorname{Re}\left[\frac{s'}{(M_{\omega} - \frac{i}{2}\Gamma_{\omega})^2 - s'}\right] \left(\frac{1 - \frac{M_{\pi^0}^2}{s'}}{1 - \frac{M_{\pi^0}^2}{M_{\omega}^2}}\right)^3 \end{aligned}$$

 resonance enhancement: details of implementation irrelevant (similar results with complex ε_ω in g_ω(s))

Effective phase in ρ -- ω mixing parameter

narrow-resonance estimate:

$$\mathrm{Im}\epsilon_{\omega} \simeq \frac{\sqrt{\Gamma[\omega \to \pi^{0}\gamma]\Gamma[\rho \to \pi^{0}\gamma]}}{3M_{V}}$$

- analogous relation for other intermediate states
- estimate leads to phases of $2.8^{\circ}(\pi^0\gamma)$, $0.4^{\circ}(\pi^+\pi^-\gamma)$, $0.2^{\circ}(\eta\gamma)$, $0.02^{\circ}(\pi^0\pi^0\gamma)$

 \Rightarrow expect a phase $\arg(\epsilon_{\omega}) \approx 3.5(1.0)^{\circ}$

Updated results for $a_{\mu}^{\mathrm{HVP},\pi\pi}$ below 1 GeV

 \rightarrow Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032

	$\chi^2/{ m dof}$	p-value	M_{ω} [MeV]	$10^3 \times \operatorname{Re}(\epsilon_{\omega})$
SND06	1.40	5.3%	781.49(32)(2)	2.03(5)(2)
CMD-2	1.18	14%	781.98(29)(1)	1.88(6)(2)
BaBar	1.14	5.7%	781.86(14)(1)	2.04(3)(2)
KLOE	1.36	7.4×10^{-4}	781.82(17)(4)	1.97(4)(2)
KLOE"	1.20	3.1%	781.81(16)(3)	1.98(4)(1)
BESIII	1.12	25%	782.18(51)(7)	2.01(19)(9)
SND20	2.93	$3.3 imes 10^{-7}$	781.79(30)(6)	2.04(6)(3)
all w/o SND20	1.23	$3.0 imes 10^{-5}$	781.69(9)(3)	2.02(2)(3)

Including phase in ϵ_{ω}

 \rightarrow Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032

	$\chi^2/{\rm dof}$	<i>p</i> -value	$M_{\omega} [{\rm MeV}]$	$10^3 \times \operatorname{Re}(\epsilon_{\omega})$	$\arg(\epsilon_{\omega})$ [°]
SND06	1.08	35%	782.11(32)(2)	1.98(4)(2)	8.5(2.3)(0.3)
CMD-2	1.01	45%	782.64(33)(4)	1.85(6)(4)	11.4(3.1)(1.0)
BaBar	1.14	5.5%	781.93(18)(4)	2.03(4)(1)	1.3(1.9)(0.7)
KLOE	1.27	6.7×10^{-3}	782.50(25)(6)	1.94(5)(2)	6.8(1.8)(0.5)
KLOE"	1.13	10%	782.42(23)(5)	1.95(4)(2)	6.1(1.7)(0.6)
BESIII	1.02	44%	783.05(60)(2)	1.99(19)(7)	17.6(6.9)(1.2)
SND20	1.87	4.1×10^{-3}	782.37(28)(6)	2.02(5)(2)	10.1(2.4)(1.4)
all w/o SND20	1.19	4.8×10^{-4}	782.09(12)(4)	1.97(2)(2)	4.5(9)(8)

4

 ρ – ω mixing

Results for $\arg(\epsilon_{\omega})$

 \rightarrow Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032

Extraction of IB contribution due to ρ - ω mixing

 \rightarrow Colangelo, Hoferichter, Kubis, Stoffer, JHEP 10 (2022) 032

- extracted from full result vs. HVP integral with $\epsilon_{\omega} = 0$
- similar size as FSR contribution (sQED):

$\arg(\epsilon_{\omega})$	0°	$4.5(1.2)^{\circ}$
$10^{10} \times a_{\mu}^{\rho - \omega}$	4.37(4)(7)	3.68(14)(10)
$10^{10} \times a_{\mu}^{\pi\pi, \mathrm{FSR}}$	4.23(1)(2)	4.24(1)(2)

• since we are considering 1-photon-irreducible HVP, entire effect to be assigned to $O(m_u - m_d)$

 \rightarrow thanks to Pablo Sanchez-Puertas for pointing this out

Re-examination of RCs to $e^+e^- \rightarrow$ hadrons

- central discussion item at "5th Workstop / Thinkstart: RC and MC tools for Strong 2020" (Zurich University)
- aiming at NNLO for leptonic part and improvement of structure-dependent NLO effects
- employing dispersion relations for radiative corrections to F_π^V

 \rightarrow G. Colangelo, M. Cottini, J. Monnard, J. Ruiz de Elvira, work in progress

- scan experiments rely on MCGPJ, ISR experiments on Phokhara: only one MC generator in each case
- Phokhara: FSR modeled by sQED × pion VFF outside loop integrals + resonance models

Forward-backward asymmetry

→ talk by G. Colangelo at UZH "WorkStop"

Overview

2 Dispersive representation of the pion VFF

- 3 Changes in the $\pi\pi$ cross section?
- 4 Isospin-breaking effects

Window quantities

Some insights from the window quantities

smooth window weight functions in Euclidean time

→ Blum et al. [RBC/UKQCD], PRL 121 (2018) 022003

total discrepancy:

 $a_{\mu}[\mathsf{BMWc}] - a_{\mu}[\mathsf{WP20}] = 14.4(6.8) \times 10^{-10}$

• intermediate window: \rightarrow Colangelo et al., PLB 833 (2022) 137313 $a_{\mu}^{\text{int}}[\text{BMWc}] - a_{\mu}^{\text{int}}[e^+e^-] = 7.3(2.0) \times 10^{-10}$

36

5

Window quantities

Some insights from the window quantities

- using form of weight functions: at least $\sim 40\%$ from above 1 GeV
- assumptions:
 - rather uniform shifts in low-energy $\pi\pi$ region
 - no significant negative shifts

5

Window quantities

Data-driven evaluation of window quantities

- → Colangelo et al., PLB 833 (2022) 137313
- standard windows: $[0,0.4]\,{\rm fm},\,[0.4,1.0]\,{\rm fm},\,[1.0,\infty)\,{\rm fm}$ with $\Delta=0.15\,{\rm fm}$
- additional windows: cuts at $\{0.1, 0.4, 0.7, 1.0, 1.3, 1.6\}$ fm
- data-driven evaluation based on merging of KNT and CHHKS
- systematic effect due to BaBar vs. KLOE tension close to the WP estimate
- full covariance matrices for windows provided

5

Results for intermediate window

R-ratio result: \rightarrow Colangelo et al., PLB 833 (2022) 137313

Additional Euclidean-time windows

→ Colangelo et al., PLB 833 (2022) 137313

Localization in time-like region possible?

- \rightarrow see also talk by D. Boito
- better localization in time-like region could be achieved by taking linear combinations of Euclidean-time windows
- typically leads to large cancellations in Euclidean-time integral
- reflecting ill-posed inverse Laplace transform
- assessing usefulness requires knowledge of full covariances
- combinations dominated by exclusive hadronic channels suffer from similar problems

5

Localization in time-like region possible?

→ Colangelo et al., PLB 833 (2022) 137313

Overview

2 Dispersive representation of the pion VFF

- 3 Changes in the $\pi\pi$ cross section?
- 4 Isospin-breaking effects

Conclusions

Conclusions

- unitarity/analyticity enable independent checks via pion VFF and $\langle r_{\pi}^2 \rangle$
- analysis of resonantly enhanced IB effects point at systematic differences between data sets
 - phase of mixing parameter
 - ω mass
- no good fit to SND20 data set possible
- CMD-3: compatible with constraints from unitarity/analyticity

Conclusions

- BMWc result: window quantities and analyticity constraints point at an effect $\leq 8 \times 10^{-10}$ below 1 GeV, $\geq 6 \times 10^{-10}$ above 1 GeV
- more detailed analysis might be possible with additional windows and knowledge of correlations