Status of the Mainz muon g-2 programme

SIMON KUBERSKI FOR THE MAINZ LATTICE GROUP

LATTICE GAUGE THEORY CONTRIBUTIONS TO NEW PHYSICS SEARCHES INSTITUTO DE FISICA TEORICA (IFT) UAM/CSIC MADRID JUNE 12, 2023

The muon g-2: A probe for new physics

• Magnetic moment of a particle with charge e_i , mass m and spin \vec{s} :

$$\vec{\mu} = g \cdot \frac{e}{2m} \cdot \vec{s}$$

Quantum corrections lead to deviations from the classical value g = 2 (Dirac) for elementary particles with $s_z = \hbar/2$, the anomalous magnetic moment

$$a = \frac{g-2}{2} = \frac{\alpha}{2\pi} + O(\alpha^2)$$
 (Schwinger)

■ Anomalous magnetic moments may be determined very precisely, for the electron one finds [2209.13084, Fan et al.]:

 $a_e = 0.001\,159\,652\,180\,59(13)\,.$

"The most precise prediction of the SM agrees with the most precise determination of a property of an elementary particle to about 1 part in 10^{12} ."

The muon g-2: A probe for new physics

hadronic vacuum polarization

SM prediction from QED, electroweak and hadronic contributions:

$$a_l^{\rm SM} = a_l^{\rm QED} + a_l^{\rm EW} + a_l^{\rm had}$$

where $a_l^{\text{had}} = a_\mu^{\text{hvp}} + a_\mu^{\text{hlbl}}$.

Contributions from new physics at some scale Λ_{NP} enter a_l for $l \in \{e, \mu, \tau\}$ via

$$a_l - a_l^{\rm SM} \propto \frac{m_l^2}{\Lambda_{\rm NP}^2}$$

where a_{τ} is inaccessible for experiment and $m_{\mu}/m_e \approx 207.$

Contribution	Value $\times 10^{11}$
Experiment (E821 + E989)	116592061(41)
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice, $udsc$)	7116(184)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116584718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116591810(43)
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$	251(59)

Theory initiative: Status for a_μ
 [2203.15810, Colangelo et al.].

 4.2 σ discrepancy between experiment and SM prediction.

Contribution	Value $\times 10^{11}$
Experiment (E821 + E989)	116592061(41)
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice, $udsc$)	7116(184)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116584718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116591810(43)
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$	251(59)

Theory initiative: Status for a_μ
 [2203.15810, Colangelo et al.].

- 4.2 σ discrepancy between experiment and SM prediction.
- Uncertainty from $a_{\mu}^{\text{hvp,LO}}$ dominates a_{μ} .

Contribution	Value $\times 10^{11}$
Experiment (E821 + E989)	116592061(41)
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice, <i>udsc</i>)	7116(184)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116584718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116591810(43)
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$	251(59)

Theory initiative: Status for a_μ [2203.15810, Colangelo et al.].

- 4.2 σ discrepancy between experiment and SM prediction.
- Uncertainty from $a_{\mu}^{\text{hvp,LO}}$ dominates a_{μ} .
- Lattice result $a_{\mu}^{\text{hvp,LO}} = 7075(55) \cdot 10^{-11}$ [2002.12347, BMWc] not included in white paper average [2006.04822, Aoyama et al.].

Hadronic vacuum polarization contribution to the muon g-2

- \leftarrow Status for a_{μ}^{hvp} [2203.15810, Colangelo et al.]
- Prediction in [2002.12347, BMWc] deviates significantly from data-driven results.
- Recent data for $e^+e^- \rightarrow \pi^+\pi^-$ [2302.08834, CMD-3] favor shift of data-driven results towards experimental result.
- Additional precise lattice results needed!
- Short term: Focus on benchmark quantities to compare among collaborations. Time windows in the Time Momentum Representation [1801.07224, Blum et al.].
- Long term: Improve overall precision of a_{μ}^{hvp} .

- \leftarrow Status for a_{μ}^{hlbl} [2203.15810, Colangelo et al.]
- White paper recommended value:

$$a_{\mu}^{\text{hlbl}} = (92 \pm 18) \cdot 10^{-11}$$

Recent lattice calculation (Mainz21):

$$a_{\mu}^{\text{hlbl}} = (109.6 \pm 14.7) \cdot 10^{-11}$$

[2104.02632, 2204.08844, Chao et al.].

- Not shown here: $a_{\mu}^{\text{hlbl}} = (124.7 \pm 14.9) \cdot 10^{-11}$ [2304.04423, RBC/UKQCD].
- Probably not the reason for tensions between SM and experiment.

$a_{\mu}^{ m hvp}$ on the lattice

Relevant quantity on the lattice: The polarization tensor

$$\Pi_{\mu\nu}(Q) = \int d^4x \, e^{iQ \cdot x} \langle j_{\mu}^{em}(x) \, j_{\nu}^{em}(0) \rangle = (Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^2) \Pi(Q^2)$$

with the electromagnetic current $j_{\mu}^{em} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s + \frac{2}{3}\bar{c}\gamma_{\mu}c + \dots$

• Compute a_{μ}^{hvp} from [Laurup et al.] [hep-lat/0212018, Blum]

$$a_{\mu}^{\rm hvp} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} \mathrm{d}Q^2 f(Q^2) \hat{\Pi}(Q^2) \,, \qquad \text{with} \quad \hat{\Pi}(Q^2) = 4\pi^2 \left[\Pi(Q^2) - \Pi(0)\right]$$

and a known QED kernel function $f(Q^2)$.

 ÎÎ admits an integral representation in terms of the spatially summed (zero momentum) vector correlator G(t) [1107.4388, Bernecker and Meyer],

$$\Pi(Q^2) - \Pi(0) = \frac{1}{Q^2} \int_0^\infty \mathrm{d}t \, G(t) \left[Q^2 t^2 - 4\sin^2\left(\frac{1}{2}Qt\right) \right] \,.$$

EUCLIDEAN TIME WINDOWS IN THE TMR: ISOVECTOR CHANNEL

Time-momentum representation [1107.4388, Bernecker and Meyer]:

$$(a_{\mu}^{\mathrm{hvp}}) := \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dt \, G(t) \widetilde{K}(t)$$

where $\widetilde{K}(t)$ is the QED kernel function

Current-current correlator:

$$G(t) = -\frac{a^3}{3} \sum_{k=1}^{3} \sum_{\vec{x}} \langle j_k^{\text{em}}(t, \vec{x}) \, j_k^{\text{em}}(0) \rangle$$

EUCLIDEAN TIME WINDOWS IN THE TMR: ISOVECTOR CHANNEL

Time-momentum representation [1107.4388, Bernecker and Meyer]:

 $(a^{\text{hvp}}_{\mu})^i := \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dt \, G(t) \widetilde{K}(t) W^i(t; t_0; t_1) \qquad \text{where } \widetilde{K}(t) \text{ is the QED kernel function}$

Current-current correlator:

$$G(t) = -\frac{a^3}{3} \sum_{k=1}^{3} \sum_{\vec{x}} \langle j_k^{\text{em}}(t, \vec{x}) \, j_k^{\text{em}}(0) \rangle$$
Time windows [1801.07224, Blum et al.]:

$$W^{\text{SD}}(t; t_0; t_1) = [1 - \Theta(t, t_0, \Delta)]$$

$$W^{\text{ID}}(t; t_0; t_1) = [\Theta(t, t_0, \Delta) - \Theta(t, t_1, \Delta)]$$

$$W^{\text{LD}}(t; t_0; t_1) = \Theta(t, t_0, \Delta)$$
where

$$\Theta(t, t', \Delta) := \frac{1}{2} (1 + \tanh[(t - t')/\Delta])$$

 $\Theta(t,t',\Delta) := \frac{1}{2} \left(1 + \tanh[(t-t')/\Delta] \right)$ $t_0 = 0.4 \,\mathrm{fm}, t_1 = 1.0 \,\mathrm{fm}, \Delta = 0.15 \,\mathrm{fm}.$

OVERVIEW OF RESULTS FOR a_{μ}^{win}

- 3.9σ tension with data-driven estimate in [2205.12963, Colangelo et al.].
- Genuine difference between lattice and data-driven results?
- Recent data-driven analysis of a_{μ}^{win} based on τ data agrees with lattice results [2305.20005, Masjuan et al.].

Simon Kuberski

THE MAINZ/CLS SETUP

 $a_{\mu}^{
m hvp}$ from 2+1 flavors of ${
m O}(a)$ improved Wilson-clover fermions

$2+1\ {\rm flavor}\ {\rm CLS}\ {\rm ensembles}$

• O(a) improved Wilson-clover fermions.

- Six values of $a \in [0.039, 0.099]$ fm, a factor of 6.4 in a^2 .
- Open boundary conditions in temporal direction.

• New ensemble / improved statistics since 2019.

Scale: Either use $\sqrt{t_0^{\text{phys}}} = 0.1443(15) \text{ fm}$ [2112.06696, Straßberger et al.] or express dimensionfull quantities in terms of af_{π} [1103.4818, Xu et al.][1904.03120, Gérardin et al.] \rightarrow new result [2211.03744, Bali et al.]: $\sqrt{t_0^{\text{phys}}} = 0.1449^{(7)}_{(9)} \text{ fm}$ may be used in the future.

Simon Kuberski

Work in isospin decomposition of the electromagnetic current

$$j_{\mu}^{\rm em} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s + \frac{2}{3}\bar{c}\gamma_{\mu}c + \dots = j_{\mu}^{I=1} + j_{\mu}^{I=0} + \frac{2}{3}\bar{c}\gamma_{\mu}c + \dots, ,$$

 $\text{Isovector: } j_{\mu}^{I=1} = \frac{1}{2}(\bar{u}\gamma_{\mu}u - \bar{d}\gamma_{\mu}d), \quad \text{Isoscalar: } j_{\mu}^{I=0} = \frac{1}{6}(\bar{u}\gamma_{\mu}u + \bar{d}\gamma_{\mu}d - 2\bar{s}\gamma_{\mu}s)$

Two discretizations of the vector current: local and conserved

$$J^{(\mathrm{L}),a}_{\mu}(x) = \overline{\psi}(x)\gamma_{\mu}\frac{\lambda^{a}}{2}\psi(x),$$

$$J^{(\mathrm{C}),a}_{\mu}(x) = \frac{1}{2}\left(\overline{\psi}(x+a\hat{\mu})(1+\gamma_{\mu})U^{\dagger}_{\mu}(x)\frac{\lambda^{a}}{2}\psi(x) - \overline{\psi}(x)(1-\gamma_{\mu})U_{\mu}(x)\frac{\lambda^{a}}{2}\psi(x+a\hat{\mu})\right).$$

O(a) IMPROVED VECTOR CURRENTS

Improved vector currents are given by

$$J^{(\alpha),a,\mathrm{I}}_{\mu}(x) = J^{(\alpha),a}_{\mu}(x) + ac_{\mathrm{V}}^{(\alpha)}(g_0)\,\tilde{\partial}_{\nu}\Sigma^a_{\mu\nu}(x)\,,\qquad\text{with}\quad\alpha\in\mathrm{L},\mathrm{C}$$

Renormalization and mass-dependent improvement of local currents via

$$\begin{split} J^{(\mathrm{L}),3,\mathrm{R}}_{\mu}(x) &= \mathbf{Z}_{\mathbf{V}} \left[1 + 3\bar{\mathbf{b}}_{\mathbf{V}} a m_{\mathrm{q}}^{\mathrm{av}} + \mathbf{b}_{\mathbf{V}} a m_{\mathrm{q},l} \right] \, J^{(\mathrm{L}),3,\mathrm{I}}_{\mu}(x) \,, \\ J^{(\mathrm{L}),8,\mathrm{R}}_{\mu}(x) &= \mathbf{Z}_{\mathbf{V}} \left[1 + 3\bar{\mathbf{b}}_{\mathbf{V}} a m_{\mathrm{q}}^{\mathrm{av}} + \frac{\mathbf{b}_{\mathbf{V}}}{3} a(m_{\mathrm{q},l} + 2m_{\mathrm{q},s}) \right] \, J^{(\mathrm{L}),8,\mathrm{I}}_{\mu}(x) \\ &+ \mathbf{Z}_{\mathbf{V}} \left(\frac{1}{3} \mathbf{b}_{\mathbf{V}} + \mathbf{f}_{\mathbf{V}} \right) \frac{2}{\sqrt{3}} a(m_{\mathrm{q},l} - m_{\mathrm{q},s}) \, J^{(\mathrm{L}),0,\mathrm{I}}_{\mu}(x) \,, \end{split}$$

Two independent non-perturbative determinations of $Z_V, c_V^L, c_V^C, b_V, \overline{b}_V$: Set 1: Large-volume, CLS ensembles [1811.08209, Gérardin et al.]

Set 2: Small volume, Schrödinger functional [2010.09539, ALPHA],[1805.07401, Fritzsch] differ by higher order cutoff effects. f_V is of $O(g_0^6)$ and unknown.

- Finite-size corrections applied to the isovector correlator.
- Correction for $t^* < \frac{(m_\pi L/4)^2}{m_\pi}$: Hansen-Patella method [1904.10010][2004.03935]
 - Expansion in the pion winding number.
 - Using monopole parametrization of the electromagnetic pion form factor.
- Large distances: MLL [1105.1892, Meyer] [hep-lat/0003023, Lellouch and Lüscher]:
 - Compute difference between finite and infinite-volume isovector correlator
 - Based on the time-like pion form factor.
 - Applied at large Euclidean distances $t > t^{\star}$.
- This is the only correction applied to the lattice data!

CHIRAL-CONTINUUM EXTRAPOLATIONS

- Separate extrapolations of isovector, isocalar and charm contributions.
- General fit ansatz, not possible to resolve all parameters at once:

 $\begin{aligned} a_{\mu}^{\min, f}(X_{a}, X_{\pi}, X_{K}) &= a_{\mu}^{\min, f}(0, X_{\pi}^{\exp}, X_{K}^{\exp}) \\ &+ \beta_{2} X_{a}^{2} + \beta_{3} X_{a}^{3} + \delta X_{a}^{2} X_{\pi} + \epsilon X_{a}^{2} \log X_{a} \\ &+ \gamma_{1} (X_{\pi} - X_{\pi}^{\exp}) + \gamma_{2} (f(X_{\pi}) - f(X_{\pi}^{\exp})) \\ &+ \gamma_{0} \left(X_{K} - X_{K}^{phys} \right) \end{aligned}$ where $X_{a} \sim a$, $X_{\pi} \sim m_{\pi}^{2}$, $X_{K} \sim m_{K}^{2} + \frac{1}{2}m_{\pi}^{2}$

- **Light quark mass effects:** $f(X_{\pi}) \in \{0; \log(X_{\pi}); X_{\pi}^2; 1/X_{\pi}; X_{\pi}\log(X_{\pi})\}$
- Final result and uncertainties from model average.

CHIRAL-CONTINUUM EXTRAPOLATIONS: THE INTERMEDIATE-DISTANCE WINDOW

Compare high-precision lattice determinations - based on [2206.06582, Cè et al.]

Continuum extrapolation at $SU(3)_{\rm f}$ symmetric point

- Two sets of equally valid improvement coefficients.
- No cutoff effects of O(*a*³) resolved for Set 1.
- Independent extrapolations compatible in the continuum → strong cross-check of our extrapolations.
- No sign of modification $a^2 \rightarrow (\alpha_s(1/a^2))^{\hat{\Gamma}}a^2$ [1912.08498, Husung et al.]

CHIRAL EXTRAPOLATION OF ISOVECTOR CONTRIBUTION

- f_{π} rescaling, local-local current and Set 1.
- Curvature in $\tilde{y} = \frac{m_{\pi}^2}{8\pi f_{\pi}^2}$ is needed to describe the data.
- Singular fit ansatz favored, also found in [2110.05493, Colangelo et al.]
- Variation in the chiral extrapolation does not change the result significantly.

 $a_{\mu}^{\mathrm{win}}(\tilde{y}) = \gamma_{1} \left(\tilde{y} - \tilde{y}^{\mathrm{exp}} \right) + \gamma_{2} \left(f(\tilde{y}) - f(\tilde{y}^{\mathrm{exp}}) \right) \,, \qquad f(\tilde{y}) \in \{0; \ \log(\tilde{y}); \ \tilde{y}^{2}; \ 1/\tilde{y}; \ \tilde{y} \log(\tilde{y}) \}$

Simon Kuberski

MODEL AVERAGES: ISOVECTOR CONTRIBUTION

- Eight combinations of discretization and improvement procedures.
- Model averages in each category to determine systematic uncertainty from choice of fit model.
 [2008.01069, Jay and Neil]

Final result by combining L and C of Set 1 with f_{π} -rescaling.

CHIRAL EXTRAPOLATION OF ISOSCALAR CONTRIBUTION

- Choose non-singular fit ansatz, $f(X_{\pi}) \in \{0; X_{\pi}^2; X_{\pi} \log(X_{\pi})\}$
- Includes disconnected contribution: Driven to gauge noise [2203.08676, Cè et al.].
- Charm contribution not included at this stage.

 Charm quark included in partially-quenched setup.

- Mass-dependent renormalization scheme.
- Effect of missing charm loops estimated to be < 0.02% for a^{win}_µ and at the per-mil level for a^{hvp}_µ [2206.06582, Cè et al.].
- Explicit, non-perturbative test is complicated with Wilson quarks (additive renormalization, am_c effects in the sea).

ISOSPIN BREAKING CORRECTIONS

QCD+QED on CLS $N_f = 2+1 \ QCD_{iso}$ gauge ensembles

- QED_L-action [0804.2044, Hayakawa and Uno] for IR regularisation, Coulomb gauge
- Reweighting based on perturbative expansion [1303.4896, de Divitiis et al.] in $\Delta \varepsilon = \varepsilon - \varepsilon^{(0)} = (\Delta m_{\rm u}, \Delta m_{\rm d}, \Delta m_{\rm s}, \Delta \beta = 0, e^2):$ $C = C^{(0)} + \sum_{f={\rm u.d.s}} \Delta m_f C^{(1)}_{\Delta m_f} + e^2 C^{(1)}_{e^2} + O(\varepsilon^2)$
- Mesonic two-point functions $C = \langle \mathcal{M}_2 \mathcal{M}_1 \rangle$: (quark-connected contribution, IB effects in valence quarks)

ISOSPIN BREAKING EFFECTS IN a_{μ}^{win}

To be considered in the future:

- QED finite-volume effects.
- Quark-disconnected and sea-quark contributions.
- IB in scale setting
 [2212.07176, Segner et al.].
- Ongoing effort [2112.00878, Risch and Wittig]: Uncertainty on relative correction 0.3(1)% doubled in final result for a_{μ}^{win} .
- Up-to-date overview in Andreas Risch's talk at the workshop *Converging on QCD+QED prescriptions* at Higgs Centre Edinburgh.
- Complementary approach [2209.02149, Biloshytskyi et al] employs coordinate space methods, similar to the HLbL contribution.

ISOSPIN BREAKING IN SCALE SETTING: Ξ **BARYON** [2212.07176, Segner et al.]

- Scale setting from the baryon spectrum. Currently most precise candidate: The Ξ (as in pure QCD in [2211.03744, Bali et al.]).
- $\leftarrow \text{ Isosymmetric contribution at} \\ m_{\pi} = 215 \, \text{MeV} \text{ and } a \approx 0.076 \, \text{MeV}.$
- $\downarrow\downarrow$ First-order contributions $am^{(1)}_{{
 m eff},a\Delta m_{
 m s}}$ and $am^{(1)}_{{
 m eff},e^2}$

Simon Kuberski

- The community agreed on blinded analyses for $a_{\mu}^{\rm hvp}$ to reduce biases.
- We have published results for a_{μ}^{hvp} and a_{μ}^{win} on a large number of ensembles: Could not prevent deliberate unblinding.
- We decided to introduce blinding at the stage of the analysis by modification of the QED kernel function $\widetilde{K}(t)$ in the integrand of the TMR:
 - Artificial cutoff effects (one kernel for each value of β).
 - Multiplicative offset.
 - …? I don't know any details.
- Use five different sets modified of kernels.

Unblinding strategy:

- 1. Cross-check results between different analyses.
- 2. Agree on final analysis. Freeze setup.
- 3. Relative unblinding between the five sets of kernels in the continuum.
- 4. Absolute unblinding of kernels / full analysis with true kernel.
- We tested this using mock data and another set of kernels.
- Our analysis is now blinded.

NOISE REDUCTION IN THE LONG-DISTANCE TAIL

■ 2.2% uncertainty: Dominated by statistical uncertainties of light quark contribution:

$$\frac{\Delta G^{\rm I1}(t)}{G^{\rm I1}(t)} \propto \exp\left[(m_{\rm V} - m_{\pi})t\right]$$

Variance reduction is needed to reach sub-percent precision.

VARIANCE REDUCTION: LOW MODE AVERAGING

- Employ Low Mode Averaging (LMA) [hep-lat/0106016, Neff et al.][hep-lat/0402002, Giusti et al.][hep-lat/0401011, DeGrand et al.][...] to reduce the variance of the isovector contribution.
- Split up the quark propagator ($Q = \gamma_5 D_{
 m W}$)

$$Q^{-1} = Q^{-1}(\mathbf{P}_{\rm L} + \mathbf{P}_{\rm H}) = \sum_{i=1}^{N_{\rm L}} \frac{1}{\lambda_i} v_i v_i^{\dagger} + Q^{-1} \mathbf{P}_{\rm H}$$

in low and high mode contributions using the projectors

$$\mathbf{P}_{\mathrm{L}} = \sum_{i=1}^{N_{\mathrm{L}}} v_i v_i^{\dagger} \,, \qquad \mathbf{P}_{\mathrm{H}} = \mathbf{1} - \mathbf{P}_{\mathrm{L}}$$

with the eigenmodes v_i and the (real) eigenvalues λ_i of Q.

Even-odd preconditioning reduces memory by factor 2 [1004.2661, Blossier et al.].

LOW MODE AVERAGING: CONNECTED TWO-POINT FUNCTION

The connected two-point function contains two quark propagators $C_{AB}(x_0, y_0) = \sum_{\mathbf{x}, \mathbf{y}} \left\langle \operatorname{Tr} \left[\gamma_5 \Gamma_A Q^{-1}(x, y) \gamma_5 \Gamma_B Q^{-1}(y, x) \right] \right\rangle$ with x_0 insertions because we use Q

with γ_5 insertions because we use Q.

• We get four terms contributing to C_{AB} , with $t \equiv x_0 - y_0$,

$$C(t) = C^{ll}(t) + C^{hl}(t) + C^{lh}(t) + C^{hh}(t) ,$$

each can be defined and computed separately:

- Evaluate $C^{ll}(t)$ with **full volume average**.
- Evaluate $C^{hl}(t) + C^{lh}(t)$ by inversion on eigenmodes (alternative: stochastic).
- **•** Evaluate C^{hh} stochastically.
- Use Truncated Solver Method [0910.3970, Bali et al.] to reduce cost of inversions.

VARIANCE REDUCTION: LOW MODE AVERAGING

- Light-connected contribution to a_{μ}^{hvp} for $m_{\pi} \approx 129 \text{ MeV}$ in a $12.4 \text{ fm} \times (6.2 \text{ fm})^3$ box at a = 0.064 fm.
- 800 eigenmodes of the even-odd preconditioned Dirac-Wilson operator γ₅D̂.

■ All-to-all evaluation of low eigenmodes dominates correlator and its variance for t > 1.5 fm.

VARIANCE REDUCTION: LOW MODE AVERAGING

Illustration of increase in precision on ensembles close to the physical point.

Left: $m_{\pi} \approx 129 \,\text{MeV}$, $a = 0.064 \,\text{fm}$. **Right**: $m_{\pi} \approx 174 \,\text{MeV}$, $a = 0.050 \,\text{fm}$.

Currently limited by autocorrelation on finer ensemble.

Spectral decomposition of the vector correlator: $G_l(t) = \sum_n |A_n|^2 e^{-E_n t}, \qquad E_n = 2\sqrt{m_{\pi}^2 + k^2}$

Dedicated spectroscopy computation to determine A_n and E_n at 200 MeV[1808.05007, Andersen et al.] [1904.03120, Gérardin et al.]. Impose bound on long-distance tail.

lower bound

upper bound

- Extend the spectroscopy computation to close-to-physical masses: E250 with $m_{\pi} \approx 129 \,\mathrm{MeV}$ at $a = 0.064 \,\mathrm{fm}$ [2112.07385, Paul et al.].
- Two-pion, zero-momentum energy levels on E250.
- Expect more states to contribute significantly compared to $m_{\pi} = 200 \,\mathrm{MeV}$.
- **Reconstruction in progress, not yet combined with** G(t)**.**
- Same data will be used for the computation of the pion transition form factor to correct for finite-size effects with less model dependence.

Reconstruction of the light-connected TMR correlator at long distances at close-to-physical pion mass [PoS LATTICE2022 073, Paul et al].

Reconstruction of the light-connected TMR correlator at long distances at close-to-physical pion mass [PoS LATTICE2022 073, Paul et al].

VARIANCE REDUCTION: COMPARISON

- Comparison of statistical uncertainties of the TMR correlator based on stochastic evaluation, reconstruction and LMA at m_{π}^{phys} .
- Significantly less noise in LMA correlator.
- Noise in reconstructed correlator grows only **linearly**.

STRANGE QUARK MASS MISTUNING

• We keep $2am_l + am_s = const$ on our ensembles.

• This implies (with $f_{K\pi} = \frac{2}{3}(f_K + \frac{1}{2}f_{\pi})$)

$$X_K \in \{\Phi_4, y_{K\pi}\} \sim \text{const} \quad \text{where} \quad \Phi_4 = 8t_0(m_K^2 + \frac{1}{2}m_\pi^2), \qquad y_{K\pi} = \frac{m_K^2 + \frac{1}{2}m_\pi^2}{8\pi f_{K\pi}^2}$$

up to O(a) and NLO χ PT effects.

- We correct for the small deviation $\Delta X_K = X_K^{\text{phys}} X_K$ in the global fit.
- No independent variation of the Kaon mass: fit parameter γ_0 not stable.

CORRECTING THE MISTUNING OF THE CHIRAL TRAJECTORY

- **Explicit computation of** $\frac{d\langle a_{\mu}^{\min} \rangle}{dX_K}$.
- Based on mass-derivatives $\frac{d\langle O \rangle}{dm_{q,i}}$ and a first-order Taylor expansion [1608.08900, Bruno et al.].
- Results confirmed by pheno estimates.
- Use results as priors for fit parameter γ_0 .
 - No significant strange quark mass dependence for $a_{\mu}^{\text{win},\text{II}}$.
 - Negative contribution for $a_{\mu}^{\text{win,s}}$.

Large uncertainties for
$$\frac{\mathrm{d}\langle a_{\mu}^{\mathrm{hvp},\mathrm{II}}\rangle}{\mathrm{d}X_{K}}$$
.

- Include ensembles with near-physical strange quark mass [RQCD, 1606.09039] and $m_{\pi} = O(200 \text{ MeV})$ in global fit.
- Slight variation of $\Phi_4 = 8t_0(m_K^2 + \frac{1}{2}m_{\pi}^2)$ due to change in m_s at these points in parameter space.
- Very mild dependence of light-connected correlation function on sea strange mistuning.

- Include ensembles with near-physical strange quark mass [RQCD, 1606.09039] and $m_{\pi} = O(200 \text{ MeV})$ in global fit.
- Slight variation of $\Phi_4 = 8t_0(m_K^2 + \frac{1}{2}m_\pi^2)$ due to change in m_s at these points in parameter space.
- Very mild dependence of light-connected correlation function on sea strange mistuning.

- Include ensembles with near-physical strange quark mass [RQCD, 1606.09039] and $m_{\pi} = O(200 \text{ MeV})$ in global fit.
- Slight variation of $\Phi_4 = 8t_0(m_K^2 + \frac{1}{2}m_\pi^2)$ due to change in m_s at these points in parameter space.
- Very mild dependence of light-connected correlation function on sea strange mistuning.

SCALE DEPENDENCIES

- Scale enters via muon mass in $\tilde{K}(t)$. Determine the scale dependence via $\frac{\partial (a_{\mu}^{\text{hvp}})^{i}}{\partial_{\Lambda}} = \left(\frac{\alpha}{\pi}\right)^{2} \sum_{0}^{\infty} dt \left[\left(\frac{\partial}{\partial_{\Lambda}} \tilde{K}(t)\right) W^{i}(t;t_{0};t_{1}) + \tilde{K}(t) \left(\frac{\partial}{\partial_{\Lambda}} W^{i}(t;t_{0};t_{1})\right) \right] G(t)$
- Using a parametrization of the R-ratio, the Mainz group estimated $\frac{\Delta a_{\mu}^{\text{hvp},\Lambda}}{a_{\mu}^{\text{hvp}}} \approx 1.8 \frac{\Delta \Lambda}{\Lambda}$ [1705.01775, Della Morte et al.] \rightarrow What about the windows?

SCALE DEPENDENCIES

- Scale enters via muon mass in $\tilde{K}(t)$. Determine the scale dependence via $\frac{\partial (a_{\mu}^{\text{hvp}})^{i}}{\partial_{\Lambda}} = \left(\frac{\alpha}{\pi}\right)^{2} \sum_{0}^{\infty} dt \left[\left(\frac{\partial}{\partial_{\Lambda}} \tilde{K}(t)\right) W^{i}(t;t_{0};t_{1}) + \tilde{K}(t) \left(\frac{\partial}{\partial_{\Lambda}} W^{i}(t;t_{0};t_{1})\right) \right] G(t)$
- Using a parametrization of the R-ratio, the Mainz group estimated $\frac{\Delta a_{\mu}^{\text{hvp},\Lambda}}{a_{\mu}^{\text{hvp}}} \approx 1.8 \frac{\Delta \Lambda}{\Lambda}$ [1705.01775, Della Morte et al.] \rightarrow What about the windows?
- My rough estimates for $\frac{\Delta (a_{\mu}^{\text{hvp},\Lambda})^{i\Lambda}}{(a_{\mu}^{\text{hvp}})^{i}\Delta\Lambda}$ at m_{π}^{phys} : $\frac{\delta a_{\mu}^{\text{hvp}} \mid \delta(a_{\mu}^{\text{hvp}})^{\text{SD}} \quad \delta(a_{\mu}^{\text{hvp}})^{\text{ID}} \quad \delta(a_{\mu}^{\text{hvp}})^{\text{LD}}}{1.8 \mid 0.0 \quad 0.5 \quad 2.7}$
- Need a highly precise scale setting for precision in a_{μ}^{hvp} .

GRADIENT FLOW SCALES

- Flow scales are not in good agreement within each set of 2 + 1 and 2 + 1 + 1.
- **Differences between** 2 + 1 and 2 + 1 + 1 larger than expected.
- This can have a significant influence on a_{μ}^{hvp} .

Simon Kuberski

[FLAG 23]

Scale dependence of $a_{\mu}^{\rm hvp,id}$

Shift the result of [2002.12347, BMWc] based on estimated scale dependence.

- (√t₀/w₀)^{FLAG 2+1+1} from [EMTc, 2104.06747][HPQCD, 1303.1670].
- Ignored possibly larger errors on Λ .

Scale dependence of a_{μ}^{hvp}

Shift the result of [2002.12347, BMWc] based on estimated scale dependence.

- (√t₀/w₀)^{FLAG 2+1+1} from [EMTc, 2104.06747][HPQCD, 1303.1670].
- Ignored possibly larger errors on Λ .
- The choice of Λ has a significant impact!

WORK THAT I DID NOT TALK ABOUT

THE HADRONIC RUNNING OF THE ELECTROMAGNETIC COUPLING

- Running of $\Delta \alpha_{had}$ computed in [2203.08676, Cè et al.].
- Significant tension with data-driven estimates at low Q².
- A future update would profit from all improvements for a_{μ}^{hvp} .

- The covariant-coordinate space (CCS) method [1706.01139, Meyer] offers an alternative to the TMR to compute a_{μ}^{hvp} and a_{μ}^{win} .
- Computation of a^{win}_μ at 350 MeV pion mass in [2211.15581, Chao, Meyer, Parrino].
- Good agreement with TMR.

- We are performing a blinded analysis.
- Reduction of statistical uncertainties underway.
- Spectroscopy and variance reduction techniques help to significantly improve our precision at physical pion mass.
- We started investigating sub-leading systematic effects, such as strange quark mistuning.
- Scale setting limits our attainable precision.
- Investigation of isospin breaking effects ongoing.

COMPARISON WITH LATTICE RESULTS FOR $a_{\mu}^{ m win, iso}$

 $a_{\mu}^{\text{win,iso}} = a_{\mu}^{\text{win,I1}} + a_{\mu}^{\text{win,I0}} + a_{\mu}^{\text{win,c}} = (236.60 \pm 0.79_{\text{stat}} \pm 1.13_{\text{syst}} \pm 0.05_{\text{Q}}) \times 10^{-10}$