Gravitation from optimized computation

Andrew Svesko

(2306.xxxxx) - Carrasco, Pedraza, Svesko, Weller-Davies
(2205.05705) - Pedraza, Russo, Svesko, Weller-Davies
(2105.12735), (2106.12585) - Pedraza, Russo, Svesko, Weller-Davies

Department of Physics and Astronomy
University College London
It From Qubit Simons Collaboration
Complexity: between field theory and gravity IFT, Madrid workshop

Black hole thermodynamics (Bekenstein ‘73), (Hawking ‘75)

$$
S_{\mathrm{BH}}=\frac{\operatorname{Area}(\mathcal{H})}{4 G}
$$

- A world with gravity is holographic
- Classical gravity is emergent
'Spacetime thermodynamics' (Jacobson '95)

$$
\delta Q=T \delta S_{\mathrm{BH}} \Longrightarrow G_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

- Local regions of spacetime assumed to obey holographic 'first law'
- Extends to any theory of gravity (Parikh, Svesko '17)
- Underlying microscopics?

Holographic entanglement entropy
(Ryu, Takayanagi '06)

$$
S_{\mathrm{vN}}^{\mathrm{CFT}}(A)=\min _{\gamma \sim A} \frac{\operatorname{Area}(\gamma)}{4 G}
$$

- Gravity has information theoretic character
- Entanglement probes spacetime
'Spacetime entanglement' (Lashkari,... '14), (Faulkner,... '14)

$$
\delta_{\rho} S_{\mathrm{vN}}(A)=\delta_{\rho}\left\langle H_{A}\right\rangle \Longrightarrow G_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

- Entanglement $=$ Geometry (Raamsdonk '10), (Swingle,...;Bianchi... '14)
- Extends to any theory; non-linear (Faulkner,... '17), (Haehl,... '17)
- 'Entanglement equilibrium' (Jacobson,... '15)
- 'Entanglement not enough' to describe late-time physics of BH interior (Maldacena,...'13), (Liu,... '13), (Susskind, '14)
- Computational complexity? Min number of gates to prepare a state

$$
\left|\psi_{f}\right\rangle=g_{n} \ldots g_{2} g_{1}\left|\psi_{i}\right\rangle=U_{f i}\left|\psi_{i}\right\rangle
$$

Holographic complexity

- complexity=volume (CV) (Susskind, '14)

$$
\mathcal{C}\left(\sigma_{A}\right)=\frac{1}{G \ell} \max _{\Sigma \sim A} V(\Sigma)
$$

- complexity=action (CA) (Brown,... '15)

$$
\mathcal{C}=\frac{1}{\pi \hbar} I_{\mathrm{WdW}}
$$

- Beyond: CV2.0 (Couch,... '16); complexity=anything (Belin,... '21)

Optimized computation is fundamental

- Principle of least action:

$$
\delta_{q} I \Rightarrow E_{q}=0
$$

- Optimal path is solves EOM

EOM reduce cost of computing system dynamics

- 'Nature is thrifty in its actions.'

Complexity quantifies optimal computation

- Operator growth \Rightarrow gravitational attraction (Susskind '19), (Barbon,... '20)
- 2D gravity governs complexity of (Virasoro) circuits (Caputa...'19)
- Quantum gravity as quantum computation (Lloyd '06)

'Spacetime complexity' (PRSWD, '21,'22)

Gravitational equations of motion result of spacetime minimizing cost of computing its own dynamics

Gravity from first law of holographic complexity

$$
\delta_{\lambda_{f}} \mathcal{C}=\frac{1}{G \ell} \delta V \Longrightarrow \delta E_{\mu \nu}=0
$$

- $\mathcal{C} \sim$ min. number of sources $\left\{\lambda_{f}\right\}$ to prepare state $\left|\psi_{f}\right\rangle$
- Bulk \leftrightarrow bdry symplectic form (Belin,... '18)

Outline:

- Complexity in terms of holographic state prep. (Belin,... '18)
- Linearized gravity EOM from 1st law (PRSWD, '21), (CPSWD, '23)
- Adding bulk quantum corrections (CPSWD, '23)

$$
\delta_{\lambda_{f}} \mathcal{C}=\frac{1}{G \ell} \delta V+\int_{M} \delta c_{\text {bulk }}, \quad \delta c_{\text {bulk }}=\frac{1}{2} \delta_{Y} g_{\mu \nu}\left\langle\delta T^{\mu \nu}\right\rangle
$$

- Visualize \mathcal{C} in terms of Lorentzian 'threads' (PRSWD '21)

Computational (circuit) complexity

- Given $\left|\psi_{i}\right\rangle$ and $\left\{g_{k}\right\}$, complexity $\mathcal{C}\left(\left|\psi_{f}\right\rangle\right)=$ min. number of gates
- \mathcal{C} - optimal cost required to prepare target state given reference state; 'shortest circuit'
Geometrization of circuit complexity (Nielsen '05)
quantum circuits \leftrightarrow geodesics in space of operations

$$
\mathcal{C}=\text { length of minimal geodesic }
$$

AdS/CFT: bulk Lorentzian spacetime $=$ time evolution of CFT state (Skenderis,...'08), (Botta-Cantcheff,...'16), (Marolf,...'17)

$$
\left|\lambda_{f}\right\rangle=T e^{-\int_{\tau<0} d \tau d \vec{x} \sum_{\alpha} \lambda_{\alpha}(\tau, \vec{x}) \mathcal{O}_{\alpha}(\tau, \vec{x})}\left|\lambda_{i}\right\rangle
$$

- Prep. $\left|\lambda_{f}\right\rangle$ on Σ_{-}from sources $\left\{\lambda_{f}\right\}$
- $\left|\lambda_{i}\right\rangle=|0\rangle \equiv \int_{\tau<0}[D \Phi] e^{-I_{E}^{\mathrm{CFT}}}$
- Bdry values of bulk fields in \mathcal{M}_{-}specify $\left|\lambda_{i}\right\rangle$ and $\left\{\lambda_{f}\right\}$
- Time evolution in $\tilde{\mathcal{M}}$ follows from solving bulk EOMs given initial data Σ_{-}
- Close contour $\left\langle\lambda_{f}^{\prime}\right|$

Geometrizing space of sources

- Space of states $|\lambda\rangle=$ manifold coordinatzed by $\left\{\lambda_{\alpha}\right\}$
- Distances given by metric $\eta_{a b}$
- Minimal path $=$ minimizing 'cost function', e.g., $F \equiv \eta_{a b} \dot{\lambda}^{a} \dot{\lambda}^{b}$

Complexity in space of sources

- $\mathcal{C}\left(\left|\lambda_{f}\right\rangle\right)=$ trajectory minimizing F (Belin,...18)

$$
\mathcal{C}\left(s_{i}, s_{f}\right)=\int_{s_{i}}^{s_{f}} d s \eta_{a b} \dot{\lambda}_{a} \dot{\lambda}_{b}
$$

- $\left\{\lambda_{f}\right\}$ act as gates $\left\{g_{k}\right\}$
- Clarifies role of reference state

A first law of complexity

$$
\delta_{\lambda_{f}} \mathcal{C}=\left(\left.\dot{\lambda}^{a}\right|_{\lambda_{f}}\right) \eta_{a b} \delta \lambda_{f}^{b}
$$

- Vary $\left\{\lambda_{f}\right\}$; look for variations minimizing computational cost

Geometrizing space of sources

- Space of states $|\lambda\rangle=$ manifold coordinatzed by $\left\{\lambda_{\alpha}\right\}$
- Distances given by (Kahler) metric $\eta_{a b}$
- Symplectic manifold with coordinates $\tilde{\lambda}=\left(\lambda_{\alpha}, \lambda_{\alpha}^{*}\right) ; 2$-form $\Omega_{\text {bdry }}$

$$
\Omega_{\mathrm{bdry}}\left(\delta_{1} \tilde{\lambda}, \delta_{2} \tilde{\lambda}\right)=i\left(\delta_{1}^{*} \delta_{2}-\delta_{2}^{*} \delta_{1}\right) \log \langle\lambda \mid \lambda\rangle
$$

- For CFTs, $Z_{\mathrm{CFT}}[\lambda]=\langle\lambda \mid \lambda\rangle$

A first law of complexity

- Special deformations of sources $\delta_{Y} \lambda$

$$
\delta_{\lambda_{f}} \mathcal{C}=\Omega_{\mathrm{bdry}}\left(\delta_{Y} \tilde{\lambda}, \delta \tilde{\lambda}\right)
$$

- $\left.\dot{\lambda}^{a}\right|_{\lambda_{f}}=J\left[\delta_{Y} \lambda\right]$, with complex structure J
- Purely a boundary first law; no gravity
- Standard AdS/CFT dictionary

$$
Z_{\mathrm{CFT}}[\tilde{\lambda}]=\langle\lambda \mid \lambda\rangle=e^{-I_{E, \mathrm{grav}}^{\text {on-shell }}[\tilde{\lambda}]}
$$

- $\tilde{\lambda}$ set bcs for bulk fields ϕ via 'extrapolate' dictionary

$$
\Omega_{\mathrm{bdry}}\left(\delta_{1} \tilde{\lambda}, \delta_{2} \tilde{\lambda}\right)=i \int_{\partial \mathcal{M}_{-}} \omega_{\mathrm{bulk}}^{E}\left(\phi, \delta_{1} \phi, \delta_{2} \phi\right)
$$

- Symplectic current form $\omega \equiv \delta_{1} \theta\left(\phi, \delta_{2} \phi\right)-\delta_{2} \theta\left(\phi, \delta_{1} \phi\right)$
- Assumes on-shell field configurations, $E_{\phi}=0$
- Linearized EOM $\delta_{1,2} E_{\phi}=0, d \omega_{\text {bulk }}=0$

$$
\Omega_{\mathrm{bdry}}\left(\delta_{1} \tilde{\lambda}, \delta_{2} \tilde{\lambda}\right)=\int_{\Sigma} \omega_{\text {bulk }}^{L}\left(\phi, \delta_{1} \phi, \delta_{2} \phi\right)=\Omega_{\mathrm{bulk}}\left(\delta_{1} \phi, \delta_{2} \phi\right)
$$

Holographic first law of complexity

$$
\delta_{\lambda_{f}} \mathcal{C}=\Omega_{\mathrm{bdry}}\left(\delta_{Y} \tilde{\lambda}, \delta \tilde{\lambda}\right)=\Omega_{\mathrm{bulk}}\left(\delta_{Y} \phi, \delta \phi\right)
$$

- Assuming $\delta_{Y} E_{\phi}=\delta E_{\phi}=0$
- δ_{Y} - 'new York' deformation (Belin,...'18)

$$
\delta_{Y} h_{a b}=0, \quad \delta_{Y} K_{a b}=-\alpha h_{a b}
$$

- ADM variables $\left(h_{a b}, \pi^{a b}\right)$. CMC slices

$$
\Omega_{\mathrm{bulk}}\left(g, \delta_{Y} g, \delta g\right)=\int_{\Sigma_{t}} \delta_{Y}\left(\pi^{a b} \delta h_{a b}\right)=\frac{(d-2) \alpha}{8 \pi G} \delta V
$$

- $V=\int_{\Sigma} \sqrt{h}$
- On-shell only on maximal slices, $K=0$.
- δ_{Y} translation in 'York time' (York '72); diffeomorphism about empty AdS

$$
\delta_{\lambda_{f}} \mathcal{C}=\Omega_{\mathrm{bdry}}\left(\delta_{Y} \tilde{\lambda}, \delta \tilde{\lambda}\right)=\Omega_{\mathrm{bulk}}\left(\delta_{Y} \phi, \delta \phi\right)=\frac{1}{G \ell} \delta V
$$

- Varying complexity \leftrightarrow linearized gravity

$$
\delta_{\lambda_{f}} \mathcal{C}=\Omega_{\mathrm{bdry}}\left(\delta_{Y} \tilde{\lambda}, \delta \tilde{\lambda}\right) \text { and } \delta_{\lambda_{f}} \mathcal{C}=\frac{1}{G \ell} \delta V \Longrightarrow \delta E_{\mu \nu}=0
$$

- Varying complexity \Longrightarrow linearized gravity

Stokes' Theorem

$$
\begin{aligned}
i \int_{\mathcal{M}_{-}} d \omega_{\mathrm{bulk}}^{E}\left(g, \delta_{Y} g, \delta g\right) & =i\left(\int_{\partial \mathcal{M}_{-}} \omega_{\mathrm{bulk}}^{E}\left(g, \delta_{Y} g, \delta g\right)-\int_{\Sigma} \omega_{\mathrm{bulk}}^{E}\left(g, \delta_{Y} g, \delta g\right)\right) \\
& =\Omega_{\mathrm{bdry}}\left(\delta_{Y} \tilde{\lambda}, \delta \tilde{\lambda}\right)-\frac{1}{G \ell} \delta V
\end{aligned}
$$

- Holds for all variations that yield real Lorentzian initial data on Σ
- Using extrapolate dictionary

First law of complexity and CV

$$
\delta_{\lambda_{f}} \mathcal{C}=\Omega_{\mathrm{bdry}}\left(\delta_{Y} \tilde{\lambda}, \delta \tilde{\lambda}\right) \text { and } \delta_{\lambda_{f}} \mathcal{C}=\frac{1}{G \ell} \delta V
$$

Then

$$
\int_{\mathcal{M}_{-}} d \omega_{\mathrm{bulk}}^{E}=0 \Rightarrow 0=\delta_{Y} E^{\mu \nu} \delta g_{\mu \nu}-\delta E^{\mu \nu} \delta_{Y} g_{\mu \nu}
$$

- Deformations about empty AdS; $\delta_{Y} E^{\mu \nu}=0$ (diffeo)
- $\delta_{Y} g_{\mu \nu} \neq 0$

$$
\delta_{\lambda_{f}} \mathcal{C}=\Omega_{\mathrm{bdry}}\left(\delta_{Y} \tilde{\lambda}, \delta \tilde{\lambda}\right) \text { and } \delta_{\lambda_{f}} \mathcal{C}=\frac{1}{G \ell} \delta V \Longrightarrow \delta E_{\mu \nu}=0
$$

- Holds for all Lorentzian maximal slices which provide initial data

- Varying complexity \Longrightarrow linearized Einstein's equations
- Spacetime dynamics from optimized computation
- Holds for perturbations over general states, not just empty AdS

Modify legs to account for other types of gravity theories

$$
\delta_{\lambda_{f}} \mathcal{C}=\Omega_{\mathrm{bdry}}\left(\delta_{Y} \tilde{\lambda}, \delta \tilde{\lambda}\right) \text { and } \delta_{\lambda_{f}} \mathcal{C}=\frac{1}{G \ell} \delta W
$$

CFTs dual to higher-order theories expect general geometric functionals Generalized volume (Bueno,...'16)

$$
\mathcal{C}=\frac{1}{G \ell} W_{\text {gen }}, \quad W_{\text {gen }}=\frac{1}{(d-2) P_{0}} \int_{\Sigma} \epsilon_{\Sigma}\left(P^{\mu \nu \rho \sigma} n_{\mu} n_{\sigma} h_{\nu \rho}-P_{0}\right)
$$

- Analog of Wald entropy for black holes; $P^{\mu \nu \rho \sigma}=\frac{\partial \mathcal{L}}{\partial R_{\mu \nu \rho \sigma}}+\ldots$

Generalized volume with corrections (Hernandez,...20)

$$
\mathcal{C}\left(\sigma_{A}\right)=\frac{1}{G \ell} \max _{\Sigma \sim A}\left[W_{\operatorname{gen}}(\Sigma)+W_{K}(\Sigma)\right]
$$

- Analog of Camps-Dong HEE; $W_{K}(\Sigma)$ ext. curvature corrections

Assume

$$
\delta_{\lambda_{f}} \mathcal{C}=\Omega_{\mathrm{bdry}}\left(\delta_{Y} \tilde{\lambda}, \delta \tilde{\lambda}\right) \text { and } \delta_{\lambda_{f}} \mathcal{C}=\frac{1}{G \ell} \delta W_{\text {gen }}
$$

- Amounts to showing

$$
\Omega_{\mathrm{bdry}}\left(\delta_{Y} \tilde{\lambda}, \delta \tilde{\lambda}\right)=\Omega_{\mathrm{bulk}}\left(g, \delta_{Y} g, \delta g\right)=\frac{1}{G \ell} \delta W_{\mathrm{gen}}
$$

- Valid for perturbations about empty AdS
- GR: $\Omega_{\mathrm{bdry}}\left(\delta_{Y}, \delta\right)=\Omega_{\mathrm{bulk}}\left(\delta_{Y}, \delta\right)$ on $K=0, \delta_{Y}$ on-shell
- Higher-order: δ_{Y} on-shell for more complicated constraint
- Match extremization of W (Hernandez,...'20) (future work)

Higher-order gravity from 1st law (CPSWD,...23)

$$
\delta_{\lambda_{f}} \mathcal{C}=\Omega_{\mathrm{bdry}}\left(\delta_{Y} \tilde{\lambda}, \delta \tilde{\lambda}\right) \text { and } \delta_{\lambda_{f}} \mathcal{C}=\frac{1}{G \ell} \delta W_{\text {gen }} \Longrightarrow \delta E_{\mu \nu}=0
$$

- Modify legs to account for semi-classical quantum corrections
- $1 / N$ corrections CFT \leftrightarrow bulk quantum corrections

$$
\delta_{\lambda_{f}} \mathcal{C}=\Omega_{\mathrm{bdry}}\left(\delta_{Y} \tilde{\lambda}, \delta \tilde{\lambda}\right) \text { and } \delta_{\lambda_{f}} \mathcal{C}=\frac{1}{G \ell} \delta W
$$

Task: Determine W when bulk quantum corrections included

- Find δ_{Y} accounting presence of bulk quantum fields
- Possible in 2D dilaton gravity

Semi-classical JT gravity

$$
\begin{gathered}
I_{\mathrm{SJT}}=I_{\mathrm{JT}}+I_{\mathrm{Poly}}+I_{\mathrm{GHY}} \\
I_{\mathrm{JT}}=\frac{1}{16 \pi G_{2}} \int_{\tilde{\mathcal{M}}} d^{2} x \sqrt{-g}\left(\left(\Phi_{0}+\Phi\right) R+\frac{2 \Phi}{L^{2}}\right) \\
I_{\mathrm{Poly}}=-\frac{c}{24 \pi} \int_{\tilde{\mathcal{M}}} d^{2} x \sqrt{-g}\left[\chi R+(\nabla \chi)^{2}\right]
\end{gathered}
$$

- Effective theory with 2D CFT χ in AdS_{2}
- Problem of backreaction solvable

Al Cl
CV complexity in 2D (Brown,...18), (Schneiderbauer,...'19), (Anegwa,...23),
(Patra,...'23)

$$
\mathcal{C} \sim V_{\mathrm{JT}}, \quad V_{\mathrm{JT}}=\int_{\Sigma} d y \sqrt{h}\left(\Phi_{0}+\Phi\right)
$$

- Motivation: \mathcal{C} grows with \# d.o.f. $\sim S \sim\left(\Phi_{0}+\Phi\right)$

A new 'new York' deformation (CPSWD, '23)

- Look for deformations δ_{Y} such that $\Omega_{\mathrm{bulk}}\left(\delta_{Y}, \delta\right) \sim \delta V_{\mathrm{JT}}$

$$
\delta_{Y} \pi^{a b}=\frac{\alpha}{2} \sqrt{h} h^{a b}\left(\Phi+\Phi_{0}\right), \quad \delta_{Y} \pi_{\Phi}=\alpha \sqrt{h}, \quad \delta_{Y} \chi=0
$$

Then,

$$
\Omega_{\mathrm{bulk}}\left(\delta_{Y}, \delta\right)=\frac{1}{G \ell} \delta V_{\mathrm{JT}}+\int_{\mathcal{M}_{-}} \delta_{Y} g_{\mu \nu}\left\langle\delta T_{\chi}^{\mu \nu}\right\rangle
$$

CV with quantum corrections

Suggestive to introduce 'bulk complexity' $c_{\text {bulk }}$

$$
\Omega_{\mathrm{bulk}}\left(\delta_{Y}, \delta\right)=\frac{1}{G \ell} \delta V_{\mathrm{JT}}+\int_{\mathcal{M}_{-}} \delta c_{\text {bulk }}, \quad \delta c_{\text {bulk }} \equiv \delta_{Y} g_{\mu \nu}\left\langle\delta T_{\chi}^{\mu \nu}\right\rangle
$$

Consistent with generalized CV (Hernandez,...'20)

$$
\mathcal{C}=\max _{\Sigma \sim A}\left[\frac{W_{\text {gen }}(\Sigma)+W_{K}(\Sigma)}{G \ell}+\mathcal{C}_{\text {bulk }}\right]
$$

- Analog of QES formula for entanglement entropy

Semi-classical gravity from first law

- Assuming first law and generalized CV

$$
" \delta G_{\mu \nu}=8 \pi G\left\langle\delta T_{\mu \nu}\right\rangle "
$$

- Holds in 2D; valid for perturbations about vacuum
- Semi-classical Einstein? Formally consistent

Reformulate CV (PRSWD, '21)

$\mathcal{C}\left(\sigma_{A}\right)=\max _{\Sigma \sim A} \frac{\mathrm{~V}(\Sigma)}{G \ell}=\min _{v \in \mathcal{F}} \int_{A} v, \quad \mathcal{F}=\left\{v\left|v^{0}>0, \nabla \cdot v=0,|v| \geq \frac{1}{G \ell}\right\}\right.$

- Lorentzian MinFlow-MaxCut theorem (Headrick \& Hubeny, '17)

Gateline interpretation

- Threads or 'gatelines' cut through physical tensors $\mathcal{C} \sim \#$ tensors in the network $\sim \#$ gatelines

- Unitaries (gates) attached to each thread
- Einstein's equations encoded in threads

$$
v \leftrightarrow \omega_{\mathrm{bulk}}\left(\delta_{Y} \phi, \delta \phi\right)
$$

- Spacetime dynamics \leftrightarrow optimized computation
- Modify legs to account for other theories
- Non-linear corrections? Extrinsic curvature?
- Other holographic duals? (Belin,... '21)
- Other measures of bdry complexity?
- Thread description?

