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Tha AdS/CFT

AdS/CFT is an interesting theoretical lab for gravity

However, we don’t live in AdS...
Can we do holography in a cosmological setting?



How are dS symmetries implemented?

How would we recognize a dS dual?

For AdSd , symmetries: SO(d − 1, 2)
For dSd we would like to identify SO(d , 1)

tt

Thermofield double



Symmetry violation in dS

For d = 3, we have six generators
• easy generators: H and J preserve static patch
• hard generators: K1,2 and R1,2 mix the dS thermofield double

A finite entropy is not compatible with the full symmetry generators
and an hermitian H

Goheer, Kleban, Susskind, hep-th/0212209

Symmetries must be violated in eternal dS



Holography for dS ?

No timelike boundary in dS

Where the dual theory is supposed to live ?



Holography for dS ?

• dS/CFT ?
spacelike infinity. CFT with no time
(Strominger, 2001)

• dual to a system with a finite number of degrees of freedom ?

S =
A

4G
Finite entropy associated to dS cosmological horizon
(Gibbons-Hawking, 1977)
Empty dS maximizes entropy



Stretched horizon holography for dS

dS should be hyperfast scrambler
the static patch should be dual to a quantum system on the

stretched horizon

S = A
4G is interpreted as entropy between left and right static patch

Susskind 2109.14104, Shaghoulian 2110.13210



Thermofield double state in AdS

AdS eternal Black Holes are dual to Thermofield double state

|ΨTFD〉 ∝
∑
n

e−Enβ/2−iEn(tL−tR)|En〉R |En〉L .

J. M. Maldacena, hep-th/0106112



The growth of Einstein-Rosen bridge

Entanglement is not enough, because is saturates at the
thermalization time

L. Susskind, 1411.0690



Complexity

Concept from theoretical computer science: it is heuristically
defined as the minimum number of simple unitary operations

required to reach a given state from a reference state

Example: a system of n qubits
• Simple state |0〉 = |00000 . . . 〉
• Generic state |ψ〉 =

∑2n
i=1 αi |i〉

• Simple operation: act on 2 qubits

Continuous version of complexity: Nielsen, geodesics in space of
unitary evolution



Holographic conjectures, CV & CA

CV ∼
Max(V )

G L
, CA =

S
π~

dC

dt
∼ T S

D. Stanford and L. Susskind, 1406.2678
A. R. Brown et al, 1509.07876



Time dependence of complexity in AdS

Both from holographic CA and CV, complexity rate approaches a
constant at late time

Complexity should reach a plateau in a time which exp in number
of degs of freedom [Susskind, 1507.02287]



Volume complexity in dS

Hyperfast complexity growth, Susskind 2109.14104

Not k-local Hamiltonian ?

k-local: the Hamiltonian is the sum of terms that simultaneously
act at most on k degrees of freedom, where k = O(1) in the limit
of a large number of degrees of freedom.



Regularizing volume in dS

Jorstad, Myers, Ruan, 2202.10684

Switchback effect:
Baiguera, Berman, Chapman, Myers, 2304.15008
Anegawa and N. Iizuka, arXiv:2304.14620



At the crossroads, the Centaurs

Geometries with a dS2 region inside AdS2

Realized in dilaton-gravity theories in 2 dimensions
D. Anninos and D. M. Hofman, 1703.04622



The volume of Centaurs

S. Chapman, D. A. Galante and E. D. Kramer, 2110.05522



What about higher dimensions?

False vacuum bubbles: "Creating a universe in the lab"

For dS bubbles inside a flat region:
Studied in ’80ies by Blau, Farhi, Guendelman and Guth

For dS bubbles inside AdS spacetime:
B. Freivogel, V. E. Hubeny, A. Maloney, R. C. Myers,
M. Rangamani and S. Shenker, [arXiv:hep-th/0510046 [hep-th]].



Scissors and glue

Cut dS (red line), AdS (blue line) and glue togheter!



Metric

ds2
i ,o = −fi ,o(r) dt2i ,o +

dr2

fi ,o(r)
+ r2dθ2

Outside, BTZ black hole: fo(r) = r2 − µ

Inside, dS3 spacetime: fo(r) = 1− λ r2

Lightcone coordinates:

vi ,o = ti ,o + r∗i ,o(r) , ui ,o = ti ,o − r∗i ,o(r) .



The wall and the juction conditions

Domain wall position as a function of proper time

r = R(τ) ,

Introducing:
βi ,o = (K θ

θ )i ,o R .

From Israel’s junction conditions

βi − βo = κR , κ = 8πG σ

βi = ±
√
Ṙ2 + fi (R) , βo = ±

√
Ṙ2 + fo(R) ,

Blau, Guendelman, Guth, Phys. Rev. D 35 (1987)



Effective potential

Ṙ2 + V (R) = 0 , V (R) = fo(R)− (fi (R)− fo(R)− κ2 R2)2

4κ2 R2

We restrict to time-reversal symmetric bubbles

R(τ) =

√
β

2
∓
√
β2 − 4γ
2

cosh(2
√
Aτ) .



Without time reversal symmetry



Static bubble

Model specified by λ, κ ("theory parameters") and µ, black hole
mass

Static bubble for µ = µ0

µ0 =

√
(κ2 + λ− 1)2 + 4λ− (κ2 + λ− 1)

2λ
,



Small bubbles
Very small bubble, 0 < µ < µs

Not so small bubble, µs < µ < µ0



Large bubbles
Not so large bubble, µh < µ < µ0

Very large bubble, 0 < µ < µh



The entropies of large bubbles

the number of degrees of freedom accessible from the AdS
boundary is less than the number of degrees of freedom of the

internal dS region

SBH = 2π
√
µ , SdS =

2π√
λ
.

λµ ≤ λµ0 ≤ 1 ,

SBH ≤ SdS ,

Large bubbles are the dual of a density matrix ?
B. Freivogel, V. E. Hubeny, A. Maloney, R. C. Myers,

M. Rangamani and S. Shenker, [arXiv:hep-th/0510046 [hep-th]].



As a function of µ

Time-reversal symmetric bubbles

For the same value of µ < µ0, we have both a small and a large
bubble solution



Volume functional

r = r(l) , t = t(l) ,

Vi ,o = 2π
∫
L dl L = r

√
−fi ,o(v ′i ,o)2 + 2r ′v ′i ,o ,

Conserved quantity

Pi ,o =
∂L
∂v ′i ,o

=
r (−fi ,ov ′i ,o + r ′)√
−fi ,o(v ′i ,o)2 + 2r ′v ′i ,o

,

Fixing reparameterization invariance:√
−fi ,o(v ′i ,o)2 + 2r ′v ′i ,o = r



Effective potential

(r ′)2 + Ui ,o(r) = P2
i ,o , Ui ,o(r) = −fi ,o(r) r2 ,

r=1/ 2 λ

Ui=-
1

4 λ

r=1/ λ

r

Ui(r)

r= μ /2

Uo=
μ2

4

r= μ
r

Uo(r)

Left: dS Right: AdS



Joining the interior with the exterior

to = G (r) ti .

ds2 = −g(r , ti ) dt
2
i +

dr2

f (r , ti )
+ 2h(r , ti ) dr dti + r2dθ2 ,

For the interior:

g(r , ti ) = fi , f (r , ti ) = fi , h(r , ti ) = 0 ,

For the exterior:

g(r , ti ) = G 2 fo , f (r , ti ) =
fo

1− f 2
o

(
dG
dr

)2
t2i

,

h(r , ti ) = −foG
dG

dr
ti .



On the domain wall

All the derivatives ∂ti f , ∂tih , ∂r f , ∂rh , will have a Dirac delta
contribution localized on the surface of the bubble

ti = Ti (τ) , r = R(τ) .

This delta function contribution is constant on the surface of the
bubble and so

∂r f =
1√

1 +
(

dR
dTi

)2
δ(r − R(τ)) ∆f ,

∂ti f = − dR

dTi

1√
1 +

(
dR
dTi

)2
δ(r − R(τ)) ∆f ,



A conserved quantity

(
ti
r

)
=

(
cosψ − sinψ
sinψ cosψ

)(
s
w

)
,

where

sinψ =
Ṙ√

Ṙ2 + Ṫ 2
i

, cosψ =
Ṫi√

Ṙ2 + Ṫ 2
i

, tanψ =
dR

dTi
.

In the approximation in which we consider just the "fast"
dependence of the Lagrangian due to discontinuities at the two

sides of the domain wall, the Lagrangian density is independent of s.

P̂ =
∂L
∂s ′

= (hr ′ − gt ′i ) cosψ +

(
r ′

f
+ ht ′i

)
sinψ .



A refraction law for extremal surfaces
Imposing that P̂ is conserved on top of the domain wall, we get a
refraction law for the extremal surface, which can be written in a

covariant form

dxµi ,o
dl

= (t ′i ,o(l), r ′i ,o(l)) ,
dXµ

i ,o

dτ
= (Ṫi ,o(τ), Ṙ(τ)) .

(gi )µν
dxµi
dl

dX ν
i

dτ
= (go)µν

dxµo
dl

dX ν
o

dτ
.

ρi ,o(R) = r ′i ,o(l0) where ri ,o(l0) = R .

Pi
dTi

dR
+
ρi (R)

fi (R)
= Po

dTo

dR
+
ρo(R)

fo(R)
.



Bubble moving at speed of light

dTi ,o

dR
= ± 1

fi ,o
.

depending on the sign

V ′i = V ′o or U ′i = U ′o

Consistent with:
Balasubramanian, Bernamonti, de Boer, Copland, Craps, et al.

1103.2683
S. Chapman, H. Marrochio and R. C. Myers, 1804.07410,



Complexity from smooth extremal surfaces

A possible way to apply the CV conjecture in asymptotically AdS
geometries with an internal dS bubble is to consider extremal
surfaces which are anchored at some given time tb at the AdS

boundary and which are smooth in the interior.

Pi = 0

Otherwise there is a curvature singularity at r = 0 in the dS interior

In this case we have shown that the complexity rate

W =
1
2π

d V
d tb

= Po



Complexity rate for small bubbles, example 1

λ = 1, κ = 0.5, μ = 0.2

-3 -2 -1 1 2 3
tb
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Complexity rate for small bubbles, example 2

λ = 1, κ = 0.5, μ = 0.85
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Maximum volume requirement

A C

D

E FB

O

G

tb

H

dC

dtb

A

-2 -1 1 2
tb

-0.4

-0.2

0.2

0.4

W

The requirement of maximal volume selects the step-like function
rate represented by the solid line



Complexity rate for large bubbles

λ = 1., κ = 0.5, μ = 0.85

-6 -4 -2 2 4 6
tb

-0.4

-0.2

0.2

0.4

W



Static bubble complexity rate

For the strictly static bubble configuration µ = µ0,

Po = 0

so the complexity rate identically vanishes.

Killing vector ∂/∂t is not broken by the bubble trajectory



Static bubble limit

λ = 1, κ = 0.5, μ = 0.882
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W

λ = 1., κ = 0.5, μ = 0.8826
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Complexity of formation

0.2 0.4 0.6 0.8
μ

0

5

15

ΔVlarge

ΔVsmall

∆Vlarge = Vlarge − VBTZ , ∆Vsmall = Vsmall − VBTZ .



Complexity with a dS stretched horizon

For a very large bubble with 0 < µ < µh, we can consider a
generalization of the thermofield double state with both an AdS

and a dS boundary.



Complexity with a dS stretched horizon

rsh =
1√
λ

(1− ε) ,

tL = ti (l = 0) , where r(l = 0) = rsh

tR = to(l = lΛ) , where r(l = lΛ) = Λ

tL = αt tR , tb = −tL = −αt



tL = tR
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tL = −tR
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Hyperfast growth of complexity

For every α, there is hyperfast behavior of complexity

Complexity diverge at the critical time

tcr =
1

4
√
λ

log
4
ε2
− Q ,

where Q is an integration constant



Conclusions

• We first focused on extremal surfaces attached just at the AdS
boundary and smooth everywhere into the interior spacetime.
With the exception of the static bubble configuration, we found
that complexity asymptotically grows linearly as a function of
time, with the same rate as for the BTZ black hole.

• The static bubble configuration gives rise to a
time-independent complexity, so it does not match the
expectation, generically satisfied by AdS black holes, that
complexity rate at late time is of the same order of magnitude
as TS , with T the temperature and S the entropy of the
system



Conclusions

• If the limit µ→ µ0 in the parameter space is approached from
the large bubble configuration, the complexity rate remains
frozen to zero for an initial amount of time which tends to
infinity for µ→ µ0.

• If the limit µ→ µ0 is approached from the small bubble region
of the parameter space, the static behavior of complexity
emerges from a class of extremal surfaces with non-maximal
volume. The discarded solutions would give rise to a negative
complexity rate, as for the two-dimensional centaur geometries.



Conclusions

• Hyperfast growth is recovered in the very large bubble case if
we consider extremal surfaces anchored both at the AdS
boundary and at the dS stretched horizon. This choice should
correspond to a thermofield double state which involves both
an AdS and a dS boundary.

• This suggest that: The volume of smooth extremal surfaces
anchored just at the boundary of AdS is proportional to the
complexity of a mixed CFT state, obtained by tracing over the
dS degrees of freedom in the thermofield double state. Instead,
the volume of the extremal surface anchored both at the AdS
boundary and at the dS static patch horizon is proportional to
the complexity of the pure product thermofield double state.



Thank you!


