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Motivation & Introduction

Dynamical aspects of a physical system are extremely important

Particularly interesting: Quantum Chaos

Classical chaos = =r=———————————  (Quantum chaos
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Motivation & Introduction

Why should we think about Quantum Chaos?

Experimental Strides: increasingly possible to access long-time dynamics of
quantum systems

Theoretical Connections: ideas of quantum chaos seem to interconnect various
fields, quantum information, quantum gravity and strongly coupled systems

Dynamics: Various Emerging time-scales

tThoules

“Early-time” “Late-time”
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Probes at different time-scales

Quantum chaos splits into two parts: Early time & Late time

The notion of evolution & growth is natural in the Operator Hilbert Space

Heisenberg Evolution:

O(t) = ethO(O)e_th

O(t) = O(0) + it |[H,O0)] H (Z;) H,|[H,O0)]] + ...

The Operator spreads through non-trivial commutators with the Hamiltonian/Quantization

Spreading nature depends on the Operator & the Hamiltonian

Technically: Local or k-local operators



Krylov (sub)-Space|

Time Evolution, redefined:

O(t) = et O(0)e " = e~ (O(0)

/

Liouvillian Operator

The Krylov (sub)-Space:

Ho =span{L"O} =span {0, |H, O], |H, |H,O]],...}
The linear gpan of each element of the above gpace forme the invariant Krylov sub-gpace

This comes with a definition of the inner product, defined in the Krylov space

Parker et al, 2019; Viswanath & Muller, 2008




| Constructing Krylov (sub)-Space

Use the inner product & construct a Gram-Schmidt orthogonalisation

The Louivillian matrix: Lmn s— (On‘£|0m)
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Non-vanighing elements: tri-diagonal matrix
L N1/2
Lanczos Coefficients: b,, = (On\C’)n)
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Parker et al, 2019; Viswanath & Muller, 2008




ITime-dependence of an Operator

Any Operator can be expanded in this basis:
O(t) = ) i"ipn(t)]On)
n "/~;..."’
Operator wave-function

Heisenberg equation of motion:

Ot dn(t) = bndn—1(t) — bpt1Pnt1(t) + tandn(?)
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A pthical inpm = Auto-correlation Parker et al, 2019; Viswanath & Muller, 2008




Operator Complexity

Definition of Krylov complexity:

Average position of the wave function along the chain

| Parker et al, 2019; Viswanath & Muller, 2008

Correspondingly, there exists a Krylov operator

Krylov operator

Ko (t) — Z L ‘On) (O’n‘ expectation value

L
...
L 4

0..
4y
....

.
at®
llllll
lllll
lllllllllllllllllllllllllllllllllllll



A devil inside the inner product detail

There exists an infinite family of inner products:
o ANH T _—AH
01102 = [ gV (pe0fe M 0,)
0

A commonly used inner product: g()\) =0 ()\ — B / 2)

Wightman inner product:

000 =T (20120,) = 7

Auto-correlation=Thermal correlator

(0(0)|O(t)) = Tr <p0(0)T0 (t | 225))



What is interesting with this?

Some Observations: b, ~ O ( 1 ) Free theory
bn ~ O ( \/ﬁ ) [ntegrable (interacting) theory
b, ~ O (n) Chaotic systems

Operator growth hypothesis:

Parker et al, 2019

Chaotic systems display a linear growth in Lanczos coefficients

E.g. SYK-model, other lattice models

Good and interesting diagnostic in discrete quantum systems

What happens in continuum QFTs?

Barbon et al., 2019 }




Continuum version: QFT

A nice starting point is to consider CFTs
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A more general choice

Recall that all results so far depend on the Wightman function as a choice for the inner
product

A trivial generalization:

(01]02) = Tr (O] p102p2) = (0] O1)]

//

Arbitrary pure state density matrix AK, Malvimat, Sinha 23

Obviously depends on the “state”

This satisfies all the desired properties of an inner product

1/2

Reduces to the familiar Wightman function: p1 = p , P2 = ,01/ 2 —BH

p=e

A standard correlator: P1 — 1 , P2 =P



Exploring the general inner product

Choose a pure state created by a heavy primary in CFT (2-dim) p = ‘¢> <1M

State-operator correspondence makes it a 4-point function in vacuum

Let us define the CFT on a cylinder:

SLXR

Allows us to define an in and an out state
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A pictorial representation
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Fitzpatrick-Kaplan et. al.




Exploring the general inner product

Look at a two point function of another primary operator in this state

" out [O()OO)]"in”

Ci (1) = 10(1)0(0)" = A

This depends on the details of the CFT, therefore highly dynamical in nature

Where can we explicitly calculate this?

Free field theory: trivial

Interacting CF T: minimal models, eq lsing CF T

[nteracting CFT: Large-¢c CFT/Holographic CFT

AK, Malvimat, Sinha ‘23




Results: First Pass

Large-c CFT: Use HHLL correlators

The Auto-Correlation Eunction
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UV-geparation of the two LL-operators

C (1) =

C
Auto-correlation becomes thermal correlator | 1 > —

12

This is like an Eigenstate Thermalization Hypothesis kind of behaviour

We are not assuming ETH here!

[rrespective of how heavy the state is, the Lanczos growth is always linear

AK, Malvimat, Sinha ‘23




Results: Second Pass

Complexity growth knows about the heaviness of the state
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E xponentially growing behaviour

K-complexity knows about the Hawking-Page like transition

Transition between Area-law entanglement & Volume-law entanglement




Results: Pictorial & Summary
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(a) K-Compexity Ky (f) vs t for LLLL . (b) K-Compexity Ky (t) vs t for HLLH.

Reminiscent of a Hawking-Page like transition: K-complexity captures
K-complexity distinguishes, but it is a state-dependent statement

Particularly, K-complexity is sensitive to the entanglement structure of the state

AK, Malvimat, Sinha ‘23




Results: More examples & pictures

A similar analyses can be carried out for the Ising CFT
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(a) K-complexity for a light operator
(o) in the light state |o) in the Ising
model.
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(b) K-complexity for a light operator
(o) in the heavy state |€) in the Ising

model
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Figure: K-complexity for the € operator in |€) state in the Ising model.

Also, for a free CFT: K (1) ! sin 2(t)
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Comments & Discussionsi

1

' Linear growth in Lanczos coefficients (does not) translate into an exponential
growth of K-complexity

A non-trivial effect of: dp EQ

A two-point function no longer imposes a non-trivial relation on a four-point function

E.g. no universal relation: T

| Thig universality is not desired: no digtinction between an integrable and a chaotic dynamics

Accesgible through an appropriate state-dependence

This dependence further raises interesting questions




1

Comments & Discussionsi

2-dim CFT, with a large c: Transition between exponential growth & bounded
Behaviour

A reminigcent of a Hawking-Page trangition
K-complexity knows about the entanglement feature of the state: Area-law vs Volume-law
Thig universality is not desired: no digtinction between an integrable and a chaotic dynamics

h\

Hypothesis: K-complexity is highly sensitive to the entanglement structure of the state

e e —— B = == P —— e ———

Free CFT & Ising CFT results are consistent with the hypothesis

|But a better check will be in a system that can interpolate between an integrable state and a chaotic state |

Of particular interest: Scar stateg, Thermo-Field Double State, ...




More Future

e R R — - —

There are related physical aspects

How does K-complexity depend on global charges?

What, if any, is the precige connection between OTOCs & K-complexity?
Broader connection with ergodicity, entanglement and typicality?

A precise Holographic dual?

Doeg the kinematic agpect of von-Neumann algebra play any role here?




Thank You!|
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