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INTRODUCTION
➤ Goal: Boundary description of the growth of the 

Einstein-Rosen Bridge (ERB). 

➤ Proposal: (Susskind, 2016): Captured by complexity 
of the boundary state evolving in Lorentzian 
time. 

➤ Controversies: Ambiguities in complexity 
definition (tolerance parameter, gates…), absence 
of explicit matching (Belin et al., 2021). 

➤ Our work: 

- Low-dimensional instance of holography. 

- Krylov complexity.
(Susskind, 2018).
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KRYLOV SPACE (OPERATORS)
-Initially defined for operators. (Parker et al., 2018) 

- A notion of complexity adapted to time evolution of an initial operator . 

-Take a Hilbert space of states  with . Operator space is . 

-Time evolution generator in  is the Liouvillian , as: 

 

- Define Krylov space as        

 Always contains . Dimension: 

𝒪 ≡ 𝒪(0)

ℋ dim ℋ = D ̂ℋ

̂ℋ ℒ := [H, ⋅ ]

𝒪(t) = eiHt𝒪e−iHt = eitℒ𝒪 = 𝒪 + it[H, 𝒪] −
t2

2 [H, [H, 𝒪]] + . . .

ℋ𝒪 := span {ℒn𝒪}+∞
n=0

≤ ̂ℋ

⟹ 𝒪(t) K ≤ D2 − D + 1

(V. S. Viswanath & G. Muller, 1994; Parker et al., 2018.)
(E. Rabinovici, ASG, R. Shir, J. Sonner, 2020.)

3



KRYLOV COMPLEXITY (STATES)
- State evolving in Schrödinger picture: . 

- Note that  for all . 

- The Lanczos algorithm provides an orthonormal basis for this Krylov space: 

,    

With Lanczos coefficients: ,   . 

State K-complexity: Given , 

                                      

|ϕ(t)⟩ = e−iHt |0⟩

|ϕ(t)⟩ ∈ span { |0⟩, H |0⟩, H2 |0⟩, . . . } =: ℋϕ t

|An+1⟩ = (H − an) |n⟩ − bn |n − 1⟩ |n + 1⟩ =
1

bn+1
|n⟩

an = ⟨n |H |n⟩ bn+1 = ⟨An+1 |An+1⟩

|ϕ(t)⟩ = ∑
n

ϕn(t) |n⟩

CK(t) = ⟨ϕ(t) | ̂n |ϕ(t)⟩ = ∑
n

n |ϕn(t) |2

(Balasubramanian et al., 2022)
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KRYLOV CHAIN AS A ONE-DIMENSIONAL HOPPING MODEL
- The Hamiltonian takes a tridiagonal form in the Krylov basis: 

                                    

- Krylov chain, with localized states , potential energies  and hopping amplitudes . 

Initial condition  spreads along the chain as it evolves, .

H =
K−2

∑
n=0

bn+1 ( |n⟩⟨n + 1 | + |n + 1⟩⟨n |) +
K−1

∑
n=0

an |n⟩⟨n |

|n⟩ an bn

ϕn(t = 0) = δn0 ϕn(t) 5

b1 b2 b3

…

|0⟩ |1⟩ |2⟩ |3⟩

1d hopping model!
a0

a1

a2

a3

(Parker et al., 2018)



SURVIVAL AMPLITUDE
- Defined as fidelity of the evolving state: 

                                            

With moments:                   

- There is a bijective correspondence:  

- Note: If  even        (as in operator case) 

For TFD:          

                         

ϕ0(t) = ⟨0 |ϕ(t)⟩ = ∑
n

(−it)n

n!
Mn

Mn = ⟨0 |Hn |0⟩

{an, bn} ⟺ {Mn}
ϕ0(t) ⟹ M2n+1 = 0 ⟹ an = 0

|0⟩ = |TFD⟩ = ∑
E

e−βE/2 |E⟩ ⊗ |E⟩

⟹ ϕ0(t) = Z(β + it) (Balasubramanian et al., 2022)
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DOUBLE-SCALED SYK (DSSYK)
➤ Analytically solvable version of SYK. Allows to approach Schwarzian sector. 

- Hamiltonian: 

                                         

- Double-scaling limit:                 

- Disordered model:         ,      . 

-  Note:  recovers model with 

H = ip/2 ∑
1≤i1<...<ip≤N

Ji1...ip ψi1 . . . ψip

λ :=
2p2

N

⟨Ji1...ip⟩ = 0 ⟨J2
i1...ip⟩ =

1
λ (N

p )
−1

J2

λ → 0 1 ≪ p ≪ N

(M. Berkooz et al., 2019; H. Lin, 2022)

(Maldacena & Stanford. 2016)
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CHORD DIAGRAMS

Untangling

- Moments of the partition function:        

- Allows for a diagrammatic representation: 

                  ,            .

M2k = ⟨Tr (H2k)⟩

M2k =
J2k

λk ∑
diagrams with k chords

qnumber of intersections q = e−λ

8
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CHORD HILBERT SPACE
➤ Idea: Interprete a chord diagram as a transition from  chords back to . 

➤ Introduce Hilbert space:    where  number of open chords. 

Diagrams of  steps:    

Recursion:    

0 0

span { |n⟩}n≥0
n =

i |ψ(i)⟩ = ∑
n≥0

ψ(i)
n |n⟩

ψ(i+1)
n =

J

λ
ψ(i)

n−1 +
J

λ
(1 + q + . . . + qn) ψ(i)

n+1

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

10
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TRANSFER MATRIX (NON-SYMMETRIC VERSION)
➤ Can write:   ,  with: 

                                

 : Transfer matrix (effective Hamiltonian in the averaged theory) 

                                                

|ψ(i)⟩ = Ti |0⟩

T *=
J

λ

0 1 − q
1 − q 0 0 …

1 0 1 − q2

1 − q 0 …

0 1 0 1 − q3

1 − q …

0 0 1 0 …
⋮ ⋮ ⋮ ⋮ ⋱

T

M2k = ⟨0 | T2k |0⟩ = ⟨0 |ψ(2k)⟩ = ψ(2k)
0 .
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TRANSFER MATRIX (SYMMETRIC VERSION)
➤ There exists a diagonal similarity transformation such that: 

                                

➤ Interpreted as renormalization of states such that .

T *=
J

λ

0 1 − q
1 − q 0 0 …

1 − q
1 − q 0 1 − q2

1 − q 0 …

0 1 − q2

1 − q 0 1 − q3

1 − q …

0 0 1 − q3

1 − q 0 …

⋮ ⋮ ⋮ ⋮ ⋱

⟨n |n′ ⟩ = δn,n′ 

(Berkooz et al., 2019)

(H. Lin, 2022)
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THE EFFECTIVE HAMILTONIAN
➤ Can write in operator language: 

                                                        

With  , where   

 q-deformed oscillator  

Can write as: ,  with   

  is conjugate momentum of .

T =
J

λ
(α + α†)

α = ∑
n≥0

[n + 1]q |n⟩⟨n + 1 | [n]q ≡
1 − qn

1 − q
=

n−1

∑
k=0

qk

⟶

α† =
1 − q ̂n

1 − q
D† D† = ∑

n≥0

|n + 1⟩⟨n | = e−ip

⟶ p ̂n

(M. Berkooz et al., 2019)
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EFFECTIVE HAMILTONIAN AND TRIPLE-SCALING LIMIT

- Defining  , 

                        

- Triple-scaling limit:  

- The Hamiltonian takes the form: 

                       ,   

λn =:
l
L

T =
J

λ(1 − q) (eiλLk 1 − e− l
L + 1 − e− l

L e−iλLk)
λ → 0, l → ∞,

e− l
L

(2λ)2
=: e− l̃

L fixed.

T̃ = E0 + 2λJ ( L2k2

2
+ 2e− l̃

L ) + O (λ2) E0 ∼ −
2J
λ

(Liouville!!   JT)⟹ (H. Lin, 2022)
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LANCZOS COEFFICIENTS IN DSSYK
➤ The chord basis automatically performs the Lanczos algorithm: 

1. Each state  is a linear combination of  . 

2.   forms an orthonormal basis. 

3. In this basis  takes tridiagonal form with positive items. 

  is the Krylov basis for  and . 

Lanczos coefficients:

|n⟩ { |ψ(k)⟩ = Tk |0⟩}n
k=0

{ |n⟩}n≥0

T

⟹ { |n⟩}n≥0
|0⟩ T

an = 0, bn = J
1 − qn

λ(1 − q)
=

J

λ
[n]q
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STATE-DEPENDENCE OF THE LANCZOS COEFFICIENTS
➤ We have performed the Krylov construction for:    

Survival probability:    

It is the partition function: 

                                    

➤ Thus,  plays the role of the  thermofield “double” in the effective (averaged) 

theory:    

                       

|ϕ(t)⟩ = e−itT |0⟩

⟨0 |e−itT |0⟩ =
+∞

∑
k=0

(−it)2k

(2k)!
M2k

⟨0 |e−itT |0⟩ = ⟨Tr [e−itH]⟩ = ⟨Z(β + it)⟩
β=0

|0⟩ β = 0

|Ω⟩ :=
1

𝒩 ∑
E

|E⟩,

Tr [e−itH] = ⟨Ω |e−itH |Ω⟩ ⟨Tr[e−itH]⟩ = ⟨⟨Ω |e−itH |Ω⟩⟩ = ⟨0 |e−itT |0⟩

M2k = ⟨0 |T2k |0⟩ = ⟨Tr (H2k)⟩

Effective theory
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ILLUSTRATION: FIRST COEFFICIENTS FROM RECURSION RELATION
➤ Can obtain the Lanczos coefficients from  computed with chord diagrams using 

the recurrence relation. 
M2k

M2 =
J2

λ

M4 =
J4

λ2
(2 + q)

M6 =
J6

λ3
(5 + 6q + 3q2 + q3)
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ILLUSTRATION: FIRST COEFFICIENTS FROM RECURSION RELATION
➤ Can obtain the Lanczos coefficients from  computed with chord diagrams using 

the recurrence relation. 
M2k

M2 =
J2

λ

M4 =
J4

λ2
(2 + q)

M6 =
J6

λ3
(5 + 6q + 3q2 + q3)

b2
1 = M2 =

J2

λ
=

J2

λ
[1]q

b2
2 =

M4

M2
− M2 =

J4

λ2 (2 + q)
J2

λ

−
J2

λ
=

J2

λ
(1 + q) =

J2

λ
[2]q

b2
3 =

M6

M2
− M4

M4

M2
− M2

−
M4

M2
= ( . . . ) =

J2

λ
(1 + q + q2) =

J2

λ
[3]q .
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K-COMPLEXITY REGIMES: EARLY TIMES

For : 

                                               

,  where  are SHO ladder operators. 

 

i.e. coherent states propagating on the Krylov chain.  

Transition time: 

n ≪
1
λ

bn = J
1 − e−λn

λ(1 − q)
≈ J

n
1 − q

⟹ T ≈ γ (a + a†) a, a†

⟹ ϕn(t) = e− γ2t2
2

(−iγt)n

n!
⟹ CK(t) =

+∞

∑
n=0

n |ϕn(t) |2 = γ2 t2

C(t*) ≈
1
λ

⟹ t* =
1
J

1 − e−λ

λ
λ→0⟶ J−1

(P. Caputa et al., 2022)
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K-COMPLEXITY REGIMES: LATE TIMES

For : 

        

➤ Given  ,  exact solution for   

Using front-most peak position:     

➤ Misses build-up of the tail of the wave packet.

n ≫
1
λ

bn = J
1 − e−λn

λ(1 − q)
≈

J
λ(1 − q) (1 −

e−λn

2 ) n→∞⟶
J

λ(1 − q)
≡ b∞

bn = b∞ ∃ ϕn(t)

CK(t) ≈ 2b∞t

(J. Barbón et al., 2019)

(E. Rabinovici, ASG, R. Shir, J. Sonner, 2023)
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K-COMPLEXITY REGIMES: SUMMARY AND NUMERICS

0 50 100 150 200n
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140

bn
J

b(n, q)
n
1-q

1- q
n

2

log� 1
q
� (1-q)

(E. Rabinovici, ASG, R. Shir, J. Sonner; 2023)
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CONTINUUM LIMIT 

Lanczos coefficients:   

Recurrence equation (Schrödinger) for : 

                                          

Continuum limit:  

                                        fixed 

                             

bn = J
1 − e−λn

λ(1 − q)

ϕn(t) = inφn(t)
·φn(t) = bnφn−1(t) − bn+1φn+1(t)

λ → 0, n → ∞, x := λn

⟹ bn ⟶
J
λ

1 − e−x + O(λ0) ≡ b(x)

(E. Rabinovici, ASG, R. Shir, J. Sonner, 2023)

(J. Barbón et al., 2019)
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CONTINUUM APPROXIMATION TO RECURRENCE EQUATION
➤ Can promote    to    such that  . 

Recurrence equation becomes: 

                                

Where:                  

Redefining: 

                                and     

We get:                               

φn(t) f(t, x) φn(t) = f(t, nλ)

∂t f(t, x) = − v(x)∂x f(t, x) −
v′ (x)

2
f(t, x) + O(λ)

v(x) = 2λb(x) = 2J 1 − e−x + O(λ) λ→0⟶ 2J 1 − e−x .

dy =
dx

v(x)
g(t, y) := v (x(y))f (t, x(y))

(∂t + ∂y) g(t, y) = 0 + O(λ) . Chiral wave equation.
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CONTINUUM APPROXIMATION - TRAJECTORY
The solution just propagates initial condition: 

                               

Given     

Position expectation value (~ K-complexity) given by position of the peak: 

                                  

Performing the integral and solving for    we find: 

                             

g(0,y) ≡ g0(y) ⟹ g(t, y) = g(y − t)

φn(0) = δn0 ⟹ g0(y) ∝ δ(y) ⟹ g(t, y) ∝ δ(y − t)

t = ∫
yp(t)

0
dy = ∫

xp(t)

0

dx
v(x)

≡ ∫
np(t)

0

λ dn
2 λ bn

= ∫
np(t)

0

dn
2 bn

np(t)

CK(t) ≈ np(t) =
2
λ

log cosh tJ
λ

1 − q
Expected to be good at small λ
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CONTINUUM APPROXIMATION VS NUMERICS

(E. Rabinovici, ASG, R. Shir, J. Sonner, 2023)
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CONNECTION TO LIOUVILLE (CLASSICAL)

➤ Going back to the continuum limit for the variable . 

Trajectory satisfying    is a solution of the EOM of: 

                                     

Why?    Classical limit of effective DSSYK Hamiltonian: 

                                     

Both have same EOM    Connection to Liouville is only classical so far.

λn = x ≡
l
L

·x = v(x) = 2J 1 − e−x

H′ ≡ E0 + 2λJ ( L2k2

2
+

2
(2λ)2

e− l
L )

⟶

T̃class ∼ −
2J
λ

cos(λ L k) 1 − e− l
L

⟶

Liouville!

(H. Lin, 2022)
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CONNECTION TO LIOUVILLE (QUANTUM)
➤ Hence the need of the triple-scaling limit. 

                            

Such that 

                     ,    

i.e. the DSSYK Hamiltonian is Liouville QM near its ground state. 

On top of this one can still perform classical approximations.

λ → 0, l → ∞,
e− l

L

(2λ)2
=: e− l̃

L fixed.

T̃ = E0 + 2λJ ( L2k2

2
+ 2e− l̃

L ) + O (λ2) E0 ∼ −
2J
λ

(H. Lin, 2022)
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HAMILTONIANS: SUMMARY

Sam
e EO

M
For 

 and 

 fixed 

 follows classical trajectory of

λ →
0

x = λn

⟨x(t)⟩

Classical Limit 
 λ → 0

λk fixed

Triple-scaling lim
it 

, 
 

λ→
0

x→
∞

(2λ) −2e −x=
e −x̃

Triple-scaling limit 
,  λ → 0 x → ∞

(2λ)−2e−x = e−x̃




 continuous

H′ = E0 + 2λJ ( k2

2 + 2
(2λ)2 e−x)

x

Classical Hamiltonian 



 continuous

T̃class = − 2J
λ

cos(λk) 1 − e−x

x

DSSYK Hamiltonian 




, discrete

T̃ = − J
λ(1 − q) [eiλk 1 − e−x + 1 − e−xe−iλk]

x ≡ λn

Triple-scaled Hamiltonian 




 continuous

T̃ = E0 + 2λJ ( k2

2 + 2e−x̃) + O(λ2)

x̃
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REGULARIZED LENGTH FROM K-COMPLEXITY IN TRIPLE-SCALED LATTICE

➤ Can envision    as the continuum limit of a lattice s.t.  . 

➤ Triple-scaled Lanczos coefficients: 

                                               

➤ Cont. approx gives K-complexity from EOM of triple-scaled Hamiltonian: 

                        

l̃
L

≡ x̃ x̃ = λñ

bñ = b − 2λJqñ + O(λ2)

λ C̃K (t) =
l̃(t)
L

= x̃0 + 2 log {cosh (2λJe−x̃0/2 t)}
TFD:  x̃0 = 0 (E. Rabinovici, ASG, R. Shir, J. Sonner, 2023)
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GRAVITY MATCHING: REMINDER OF JT RESULTS
➤ Two-sided length in : AdS2

l̃
lAdS

= l − 2 log ( 2ϕb

ϵ )
= 2 log [cosh ( Φh

lAdS ϕb
tb)] − 2 log Φh

X

T2

T1

➤ JT Hamiltonian: 

H =
1

lAdS ϕb ( l2
AdS P2

2
+ 2e−l̃/lAdS)

(D. Harlow & D. Jafferis, 2018)
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GRAVITY MATCHING: CORRESPONDENCE AND PARAMETER IDENTIFICATIONS
➤ K-complexity eigenstates are bulk length eigenstates because: 

1. Krylov elements are fixed chord number states. 

2. Fixed chord number states are bulk length eigenstates. 

➤ Parameter identifications: 

1. From Hamiltonian:    

2. From classical evaluation:  

L = lAdS, 2λJ =
1

lAdS ϕb

x̃0 = − 2 log Φh

(H. Lin, 2022)

(E. Rabinovici, ASG, R. Shir, J. Sonner, 2023)
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CONCLUSION
➤ Krylov complexity as a candidate for holography. 

➤ DSSYK as a system where the holographic dictionary is well established. 

➤ Under this dictionary, K-complexity is exactly 2-sided bulk length. 

➤ Saturation of complexity:  finite size on boundary   higher genus corrections in 
bulk 

➤ Corrections to JT from higher orders in  

➤ Operators? 

➤ Higher dimensions?

⟷

λ?
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