

INTRODUCTION

(Susskind, 2018).
> Goal: Boundary description of the growth of the Einstein-Rosen Bridge (ERB).

- Proposal: (Susskind, 2016): Captured by complexity of the boundary state evolving in Lorentzian time.
> Controversies: Ambiguities in complexity definition (tolerance parameter, gates...), absence of explicit matching (Belin et al., 2021).
- Our work:
- Low-dimensional instance of holography.
- Krylov complexity.

KRYLOV SPACE (OPERATORS)

-Initially defined for operators. (Parker et al., 2018)

- A notion of complexity adapted to time evolution of an initial operator $\mathcal{O} \equiv \mathcal{O}(0)$.
-Take a Hilbert space of states \mathscr{H} with $\operatorname{dim} \mathscr{H}=D$. Operator space is $\widehat{\mathscr{H}}$.
-Time evolution generator in $\widehat{\mathscr{H}}$ is the Liouvillian $\mathscr{L}:=[H, \cdot]$, as:

$$
\mathcal{O}(t)=e^{i H t} \mathcal{O} e^{-i H t}=e^{i t \mathscr{L}} \mathcal{O}=\mathcal{O}+i t[H, \mathcal{O}]-\frac{t^{2}}{2}[H,[H, \mathcal{O}]]+\ldots
$$

- Define Krylov space as $\mathscr{H}_{\mathscr{O}}:=\operatorname{span}\left\{\mathscr{L}^{n} \mathcal{O}\right\}_{n=0}^{+\infty} \leq \widehat{\mathscr{H}}$
\Longrightarrow Always contains $\mathcal{O}(t)$. Dimension: $K \leq D^{2}-D+1$
(E. Rabinovici, ASG, R. Shir, J. Sonner, 2020.)
(V. S. Viswanath \& G. Muller, 1994; Parker et al., 2018.)

KRYLOV COMPLEXITY (STATES)

- State evolving in Schrödinger picture: $|\phi(t)\rangle=e^{-i H t}|0\rangle$.
- Note that $|\phi(t)\rangle \in \operatorname{span}\left\{|0\rangle, H|0\rangle, H^{2}|0\rangle, \ldots\right\}=: \mathscr{H}_{\phi}$ for all t.
- The Lanczos algorithm provides an orthonormal basis for this Krylov space:

$$
\left|A_{n+1}\right\rangle=\left(H-a_{n}\right)|n\rangle-b_{n}|n-1\rangle, \quad|n+1\rangle=\frac{1}{b_{n+1}}|n\rangle
$$

With Lanczos coefficients: $a_{n}=\langle n| H|n\rangle, \quad b_{n+1}=\sqrt{\left\langle A_{n+1} \mid A_{n+1}\right\rangle}$.
State K-complexity: Given $|\phi(t)\rangle=\sum_{n} \phi_{n}(t)|n\rangle$,
(Balasubramanian et al., 2022)

$$
C_{K}(t)=\langle\phi(t)| \hat{n}|\phi(t)\rangle=\sum_{n} n\left|\phi_{n}(t)\right|^{2}
$$

KRYLOV CHAIN AS A ONE-DIMENSIONAL HOPPING MODEL

- The Hamiltonian takes a tridiagonal form in the Krylov basis:

$$
H=\sum_{n=0}^{K-2} b_{n+1}(|n\rangle\langle n+1|+|n+1\rangle\langle n|)+\sum_{n=0}^{K-1} a_{n}|n\rangle\langle n|
$$

- Krylov chain, with localized states $|n\rangle$, potential energies a_{n} and hopping amplitudes b_{n}.

Initial condition $\phi_{n}(t=0)=\delta_{n 0}$ spreads along the chain as it evolves, $\phi_{n}(t)$.

SURVIVAL AMPLITUDE

- Defined as fidelity of the evolving state:

$$
\phi_{0}(t)=\langle 0 \mid \phi(t)\rangle=\sum_{n} \frac{(-i t)^{n}}{n!} M_{n}
$$

With moments:

$$
M_{n}=\langle 0| H^{n}|0\rangle
$$

- There is a bijective correspondence: $\left\{a_{n}, b_{n}\right\} \Longleftrightarrow\left\{M_{n}\right\}$
- Note: If $\phi_{0}(t)$ even $\Longrightarrow M_{2 n+1}=0 \Longrightarrow a_{n}=0 \quad$ (as in operator case)

For TFD:

$$
\begin{aligned}
& |0\rangle=|T F D\rangle=\sum_{E} e^{-\beta E / 2}|E\rangle \otimes|E\rangle \\
& \Longrightarrow \phi_{0}(t)=Z(\beta+i t) \quad \text { (Balasubramanian et al., 2022) }
\end{aligned}
$$

DOUBLE-SCALED SYK (DSSYK)

> Analytically solvable version of SYK. Allows to approach Schwarzian sector.

- Hamiltonian:

$$
H=i^{p / 2} \sum_{1 \leq i_{1}<\ldots<i_{p} \leq N} J_{i_{1} \ldots i_{p}} \psi_{i_{1}} \ldots \psi_{i_{p}}
$$

- Double-scaling limit:

$$
\lambda:=\frac{2 p^{2}}{N}
$$

. Disordered model: $\quad\left\langle J_{i_{1} \ldots i_{p}}\right\rangle=0, \quad\left\langle J_{i_{1} \ldots i_{p}}^{2}\right\rangle=\frac{1}{\lambda}\binom{N}{p}^{-1} J^{2}$.

- Note: $\lambda \rightarrow 0$ recovers model with $1 \ll p \ll N$ (Maldacena \& Stanford. 2016)

CHORD DIAGRAMS

- Moments of the partition function: $\quad M_{2 k}=\left\langle\operatorname{Tr}\left(H^{2 k}\right)\right\rangle$
- Allows for a diagrammatic representation:

$$
M_{2 k}=\frac{J^{2 k}}{\lambda^{k}} \sum_{\text {diagrams with } k \text { chords }} q^{\text {number of intersections }}, \quad q=e^{-\lambda}
$$

CHORD DIAGRAMS

- Moments of the partition function: $\quad M_{2 k}=\left\langle\operatorname{Tr}\left(H^{2 k}\right)\right\rangle$
- Allows for a diagrammatic representation:

$$
M_{2 k}=\frac{J^{2 k}}{\lambda^{k}} \sum_{\text {diagrams with } k \text { chords }} q^{\text {number of intersections }}, \quad q=e^{-\lambda}
$$

CHORD HILBERT SPACE

- Idea: Interprete a chord diagram as a transition from 0 chords back to 0 .

- Introduce Hilbert space: $\operatorname{span}\{|n\rangle\}_{n \geq 0}$ where $n=$ number of open chords.

Diagrams of i steps: $\quad\left|\psi^{(i)}\right\rangle=\sum_{n \geq 0} \psi_{n}^{(i)}|n\rangle$
Recursion: $\psi_{n}^{(i+1)}=\frac{J}{\sqrt{\lambda}} \psi_{n-1}^{(i)}+\frac{J}{\sqrt{\lambda}}\left(1+q+\ldots+q^{n}\right) \psi_{n+1}^{(i)}$

TRANSFER MATRIX (NON-SYMMETRIC VERSION)

> Can write: $\left|\psi^{(i)}\right\rangle=T^{i}|0\rangle$, with:

$$
T \stackrel{*}{=} \frac{J}{\sqrt{\lambda}}\left(\begin{array}{ccccc}
0 & \frac{1-q}{1-q} & 0 & 0 & \ldots \\
1 & 0 & \frac{1-q^{2}}{1-q} & 0 & \ldots \\
0 & 1 & 0 & \frac{1-q^{3}}{1-q} & \ldots \\
0 & 0 & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

T : Transfer matrix (effective Hamiltonian in the averaged theory)

$$
M_{2 k}=\langle 0| T^{2 k}|0\rangle=\left\langle 0 \mid \psi^{(2 k)}\right\rangle=\psi_{0}^{(2 k)} .
$$

TRANSFER MATRIX (SYMMETRIC VERSION)

> There exists a diagonal similarity transformation such that:

$$
T \stackrel{*}{=} \frac{J}{\sqrt{\lambda}}\left(\begin{array}{ccccc}
0 & \sqrt{\frac{1-q}{1-q}} & 0 & 0 & \cdots \\
\sqrt{\frac{1-q}{1-q}} & 0 & \sqrt{\frac{1-q^{2}}{1-q}} & 0 & \cdots \\
0 & \sqrt{\frac{1-q^{2}}{1-q}} & 0 & \sqrt{\frac{1-q^{3}}{1-q}} & \cdots \\
0 & 0 & \sqrt{\frac{1-q^{3}}{1-q}} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

> Interpreted as renormalization of states such that $\left\langle n \mid n^{\prime}\right\rangle=\delta_{n, n^{\prime}}$.

THE EFFECTIVE HAMILTONIAN

> Can write in operator language:

$$
T=\frac{J}{\sqrt{\lambda}}\left(\alpha+\alpha^{\dagger}\right)
$$

With $\alpha=\sum_{n \geq 0} \sqrt{[n+1]_{q}} \quad|n\rangle\langle n+1|$, where $[n]_{q} \equiv \frac{1-q^{n}}{1-q}=\sum_{k=0}^{n-1} q^{k}$
$\longrightarrow q$-deformed oscillator (M. Berkooz et al., 2019)
Can write as: $\alpha^{\dagger}=\sqrt{\frac{1-q^{\hat{n}}}{1-q}} D^{\dagger}$, with $D^{\dagger}=\sum_{n \geq 0}|n+1\rangle\langle n|=e^{-i p}$
$\longrightarrow p$ is conjugate momentum of \hat{n}.

EFFECTIVE HAMLLTONIAN AND TRIPLE-SCALING LIMIT

. Defining $\lambda n=: \frac{l}{L}$,

$$
T=\frac{J}{\sqrt{\lambda(1-q)}}\left(e^{i \lambda L k} \sqrt{1-e^{-\frac{l}{L}}}+\sqrt{1-e^{-\frac{l}{L}}} e^{-i \lambda L k}\right)
$$

- Triple-scaling limit: $\lambda \rightarrow 0, \quad l \rightarrow \infty, \quad \frac{e^{-\frac{l}{L}}}{(2 \lambda)^{2}}=: e^{-\frac{\tilde{l}}{L}} \quad$ fixed.
- The Hamiltonian takes the form: (Liouville!! $\Longrightarrow J T$)

$$
\tilde{T}=E_{0}+2 \lambda J\left(\frac{L^{2} k^{2}}{2}+2 e^{-\frac{I}{L}}\right)+O\left(\lambda^{2}\right), \quad E_{0} \sim-\frac{2 J}{\lambda}
$$

LANCZOS COEFFICIENTS IN DSSYK

> The chord basis automatically performs the Lanczos algorithm:

1. Each state $|n\rangle$ is a linear combination of $\left\{\left|\psi^{(k)}\right\rangle=T^{k}|0\rangle\right\}_{k=0}^{n}$.
2. $\{|n\rangle\}_{n \geq 0}$ forms an orthonormal basis.
3. In this basis T takes tridiagonal form with positive items.
$\Longrightarrow\{|n\rangle\}_{n \geq 0}$ is the Krylov basis for $|0\rangle$ and T.
Lanczos coefficients:

$$
a_{n}=0, \quad b_{n}=J \sqrt{\frac{1-q^{n}}{\lambda(1-q)}}=\frac{J}{\sqrt{\lambda}} \sqrt{[n]_{q}}
$$

STATE-DEPENDENCE OF THE LANCZOS COEFFICIENTS

- We have performed the Krylov construction for: $|\phi(t)\rangle=e^{-i t T}|0\rangle$

Survival probability: $\langle 0| e^{-i t T}|0\rangle=\sum_{k=0}^{+\infty} \frac{(-i t)^{2 k}}{(2 k)!} M_{2 k}$

$$
M_{2 k}=\langle 0| T^{2 k}|0\rangle=\left\langle\operatorname{Tr}\left(H^{2 k}\right)\right\rangle
$$

It is the partition function:

$$
\langle 0| e^{-i t T}|0\rangle=\left\langle\operatorname{Tr}\left[e^{-i t H}\right]\right\rangle=\left.\langle Z(\beta+i t)\rangle\right|_{\beta=0}
$$

> Thus, $|0\rangle$ plays the role of the $\beta=0$ thermofield "double" in the effective (averaged) theory: $|\Omega\rangle:=\frac{1}{\sqrt{\mathcal{N}}} \sum_{E}|E\rangle, \quad$ Cf Harlow $\&$ Jafferis, 2018

$$
\operatorname{Tr}\left[e^{-i t H}\right]=\langle\Omega| e^{-i t H}|\Omega\rangle
$$

Effective theory

$$
\left.\left\langle\operatorname{Tr}\left[e^{-i t H}\right]\right\rangle=\left\langle\langle\Omega| e^{-i t H} \mid \Omega\right\rangle\right\rangle=\langle 0| e^{-i t T}|0\rangle
$$

ILLUSTRATION: FIRST COEFFICIENTS FROM RECURSION RELATION

- Can obtain the Lanczos coefficients from $M_{2 k}$ computed with chord diagrams using the recurrence relation.

$$
\begin{aligned}
& M_{2}=\frac{J^{2}}{\lambda} \\
& M_{4}=\frac{J^{4}}{\lambda^{2}}(2+q) \\
& M_{6}=\frac{J^{6}}{\lambda^{3}}\left(5+6 q+3 q^{2}+q^{3}\right)
\end{aligned}
$$

ILLUSTRATION: FIRST COEFFICIENTS FROM RECURSION RELATION

> Can obtain the Lanczos coefficients from $M_{2 k}$ computed with chord diagrams using the recurrence relation.

$$
\begin{aligned}
& M_{2}=\frac{J^{2}}{\lambda} \\
& M_{4}=\frac{J^{4}}{\lambda^{2}}(2+q) \\
& M_{6}=\frac{J^{6}}{\lambda^{3}}\left(5+6 q+3 q^{2}+q^{3}\right)
\end{aligned}
$$

ILLUSTRATION: FIRST COEFFICIENTS FROM RECURSION RELATION

- Can obtain the Lanczos coefficients from $M_{2 k}$ computed with chord diagrams using the recurrence relation.

$$
\begin{aligned}
& M_{2}=\frac{J^{2}}{\lambda} \\
& M_{4}=\frac{J^{4}}{\lambda^{2}}(2+q) \\
& M_{6}=\frac{J^{6}}{\lambda^{3}}\left(5+6 q+3 q^{2}+q^{3}\right)
\end{aligned}
$$

ILLUSTRATION: FIRST COEFFICIENTS FROM RECURSION RELATION

- Can obtain the Lanczos coefficients from $M_{2 k}$ computed with chord diagrams using the recurrence relation.

$$
\begin{aligned}
& M_{2}=\frac{J^{2}}{\lambda} \\
& M_{4}=\frac{J^{4}}{\lambda^{2}}(2+q) \\
& M_{6}=\frac{J^{6}}{\lambda^{3}}\left(5+6 q+3 q^{2}+q^{3}\right)
\end{aligned}
$$

$$
b_{1}^{2}=M_{2}=\frac{J^{2}}{\lambda}=\frac{J^{2}}{\lambda}[1]_{q}
$$

$$
b_{2}^{2}=\frac{M_{4}}{M_{2}}-M_{2}=\frac{\frac{J^{4}}{\lambda^{2}}(2+q)}{\frac{J^{2}}{\lambda}}-\frac{J^{2}}{\lambda}=\frac{J^{2}}{\lambda}(1+q)=\frac{J^{2}}{\lambda}[2]_{q}
$$

$$
b_{3}^{2}=\frac{\frac{M_{6}}{M_{2}}-M_{4}}{\frac{M_{4}}{M_{2}}-M_{2}}-\frac{M_{4}}{M_{2}}=(\ldots)=\frac{J^{2}}{\lambda}\left(1+q+q^{2}\right)=\frac{J^{2}}{\lambda}[3]_{q} .
$$

K-COMPLEXITY REGIMES: EARLY TIMES

For $n \ll \frac{1}{\lambda}$:

$$
b_{n}=J \sqrt{\frac{1-e^{-\lambda n}}{\lambda(1-q)}} \approx J \sqrt{\frac{n}{1-q}}
$$

$\Longrightarrow \quad T \approx \gamma\left(a+a^{\dagger}\right)$, where a, a^{\dagger} are SHO ladder operators.
$\Longrightarrow \quad \phi_{n}(t)=e^{-\frac{\gamma^{2} t^{2}}{2}} \frac{(-i \gamma t)^{n}}{\sqrt{n!}} \Longrightarrow C_{K}(t)=\sum_{n=0}^{+\infty} n\left|\phi_{n}(t)\right|^{2}=\gamma^{2} t^{2}$
(P. Caputa et al., 2022)
i.e. coherent states propagating on the Krylov chain.

Transition time: $C\left(t_{*}\right) \approx \frac{1}{\lambda} \quad \Longrightarrow \quad t_{*}=\frac{1}{J} \sqrt{\frac{1-e^{-\lambda}}{\lambda}} \xrightarrow{\lambda \rightarrow 0} J^{-1}$

K-COMPLEXITY REGIMES: LATE TIMES

For $n \gg \frac{1}{\lambda}$:

$$
b_{n}=J \sqrt{\frac{1-e^{-\lambda n}}{\lambda(1-q)}} \approx \frac{J}{\sqrt{\lambda(1-q)}}\left(1-\frac{e^{-\lambda n}}{2}\right) \quad \stackrel{n \rightarrow \infty}{\longrightarrow} \frac{J}{\sqrt{\lambda(1-q)}} \equiv b_{\infty}
$$

\rightarrow Given $b_{n}=b_{\infty}, \exists$ exact solution for $\phi_{n}(t)$

Using front-most peak position: $\quad C_{K}(t) \approx 2 b_{\infty} t$
> Misses build-up of the tail of the wave packet.

K-COMPLEXITY REGIMES: SUMMARY AND NUMERICS

CONTINUUM LIMIT

Lanczos coefficients: $b_{n}=J \sqrt{\frac{1-e^{-\lambda n}}{\lambda(1-q)}}$
Recurrence equation (Schrödinger) for $\phi_{n}(t)=i^{n} \varphi_{n}(t)$:

$$
\dot{\varphi}_{n}(t)=b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t)
$$

(J. Barbón et al., 2019)

Continuum limit: (E. Rabinovici, ASG, R. Shir, J. Sonner, 2023)

$$
\begin{aligned}
& \lambda \rightarrow 0, \quad n \rightarrow \infty, \quad x:=\lambda n \quad \text { fixed } \\
\Longrightarrow \quad & b_{n} \longrightarrow \frac{J}{\lambda} \sqrt{1-e^{-x}}+O\left(\lambda^{0}\right) \equiv b(x)
\end{aligned}
$$

CONTINUUM APPROXIMATION TO RECURRENCE EQUATION

> Can promote $\varphi_{n}(t)$ to $f(t, x)$ such that $\varphi_{n}(t)=f(t, n \lambda)$.
Recurrence equation becomes:

$$
\partial_{t} f(t, x)=-v(x) \partial_{x} f(t, x)-\frac{v^{\prime}(x)}{2} f(t, x)+O(\lambda)
$$

Where:

$$
v(x)=2 \lambda b(x)=2 J \sqrt{1-e^{-x}}+O(\lambda) \xrightarrow{\lambda \rightarrow 0} 2 J \sqrt{1-e^{-x}} .
$$

Redefining:

$$
d y=\frac{d x}{v(x)} \quad \text { and } \quad g(t, y):=\sqrt{v(x(y))} f(t, x(y))
$$

We get:

$$
\left(\partial_{t}+\partial_{y}\right) g(t, y)=0+O(\lambda)
$$

Chiral wave equation.

CONTINUUM APPROXIMATION - TRAJECTORY

The solution just propagates initial condition:

$$
g(0, y) \equiv g_{0}(y) \quad \Longrightarrow \quad g(t, y)=g(y-t)
$$

Given $\varphi_{n}(0)=\delta_{n 0} \Longrightarrow g_{0}(y) \propto \delta(y) \quad \Longrightarrow \quad g(t, y) \propto \delta(y-t)$
Position expectation value (\sim K-complexity) given by position of the peak:

$$
t=\int_{0}^{y_{p}(t)} d y=\int_{0}^{x_{p}(t)} \frac{d x}{v(x)} \equiv \int_{0}^{n_{p}(t)} \frac{\lambda d n}{2 \lambda b_{n}}=\int_{0}^{n_{p}(t)} \frac{d n}{2 b_{n}}
$$

Performing the integral and solving for $n_{p}(t)$ we find:

$$
C_{K}(t) \approx n_{p}(t)=\frac{2}{\lambda} \log \left\{\cosh \left[t J \sqrt{\frac{\lambda}{1-q}}\right]\right\} \quad \text { Expected to be good at small } \lambda
$$

CONTINUUM APPROXIMATION VS NUMERICS

[^0]
CONNECTION TO LIOUVILLE (CLASSICAL)

> Going back to the continuum limit for the variable $\lambda n=x \equiv \frac{l}{L}$. Trajectory satisfying $\dot{x}=v(x)=2 J \sqrt{1-e^{-x}}$ is a solution of the EOM of:

$$
H^{\prime} \equiv E_{0}+2 \lambda J\left(\frac{L^{2} k^{2}}{2}+\frac{2}{(2 \lambda)^{2}} e^{-\frac{l}{L}}\right)
$$

Liouville!

Why? \longrightarrow Classical limit of effective DSSYK Hamiltonian: (H. Lin, 2022)

$$
\tilde{T}_{\text {class }} \sim-\frac{2 J}{\lambda} \cos (\lambda L k) \sqrt{1-e^{-\frac{l}{L}}}
$$

Both have same EOM \longrightarrow Connection to Liouville is only classical so far.

CONNECTION TO LIOUVILLE (QUANTUM)

> Hence the need of the triple-scaling limit.

$$
\lambda \rightarrow 0, \quad l \rightarrow \infty, \quad \frac{e^{-\frac{l}{L}}}{(2 \lambda)^{2}}=: e^{-\frac{\tilde{L}}{L}} \quad \text { fixed. } \quad \text { (H. Lin, 2022) }
$$

Such that

$$
\tilde{T}=E_{0}+2 \lambda J\left(\frac{L^{2} k^{2}}{2}+2 e^{-\frac{\tilde{i}}{L}}\right)+O\left(\lambda^{2}\right), \quad E_{0} \sim-\frac{2 J}{\lambda}
$$

i.e. the DSSYK Hamiltonian is Liouville QM near its ground state.

On top of this one can still perform classical approximations.

HAMILTONIANS: SUMMARY

REGULARIZED LENGTH FROM K-COMPLEXITY IN TRIPLE-SCALED LATIICE

- Can envision $\frac{\tilde{l}}{L} \equiv \tilde{x}$ as the continuum limit of a lattice s.t. $\tilde{x}=\lambda \tilde{n}$.
- Triple-scaled Lanczos coefficients:

$$
b_{\tilde{n}}=b-2 \lambda J q^{\tilde{n}}+O\left(\lambda^{2}\right)
$$

> Cont. approx gives K-complexity from EOM of triple-scaled Hamiltonian:

$$
\lambda \widetilde{C_{K}}(t)=\frac{\tilde{l}(t)}{L}=\tilde{x}_{0}+2 \log \left\{\cosh \left(2 \lambda J e^{-\widetilde{x}_{0} / 2} t\right)\right\}
$$

$$
T F D: \tilde{x}_{0}=0
$$

GRAVITY MATCHING: REMINDER OF JT RESULTS

> Two-sided length in AdS_{2} :
$\frac{\tilde{l}}{l_{A d S}}=l-2 \log \left(\frac{2 \phi_{b}}{\epsilon}\right)$
$=2 \log \left[\cosh \left(\frac{\Phi_{h}}{l_{A d S} \phi_{b}} t_{b}\right)\right]-2 \log \Phi_{h}$

> JT Hamiltonian:

$$
H=\frac{1}{l_{A d S} \phi_{b}}\left(\frac{l_{A d S}^{2} P^{2}}{2}+2 e^{-\tilde{l} l_{A d S}}\right)
$$

(D. Harlow \& D. Jafferis, 2018)

GRAVITY MATCHING: CORRESPONDENCE AND PARAMETER IDENTIFICATIONS

- K-complexity eigenstates are bulk length eigenstates because:

1. Krylov elements are fixed chord number states. (E. Rabinovici, ASG, R. Shir, J. Sonner, 2023)
2. Fixed chord number states are bulk length eigenstates. (H. Lin, 2022)

- Parameter identifications:

1. From Hamiltonian: $L=l_{A d S}, \quad 2 \lambda J=\frac{1}{l_{A d S} \phi_{b}}$
2. From classical evaluation: $\tilde{x}_{0}=-2 \log \Phi_{h}$

CONCLUSION

- Krylov complexity as a candidate for holography.
- DSSYK as a system where the holographic dictionary is well established.
> Under this dictionary, K-complexity is exactly 2 -sided bulk length.
> Saturation of complexity: finite size on boundary \longleftrightarrow higher genus corrections in bulk
> Corrections to JT from higher orders in λ ?
> Operators?
> Higher dimensions?

[^0]: (E. Rabinovici, ASG, R. Shir, J. Sonner, 2023)

