Spacetime as a Quantum Circuit?

Mario Flory
funded by
NARODOW E
CENTRUM
N AUKI
grant 2021/42/E/ST2/00234

Madrid
22.05.2023

Based on 2101.01185 and 2203.08842

The Team:

Spacetime as a quantum circuit

A. Ramesh Chandra, ${ }^{a}$ Jan de Boer, ${ }^{a}$ Mario Flory, ${ }^{b, c}$ Michal P. Heller, ${ }^{d, 1}$ Sergio Hörtner, ${ }^{a}$ and Andrew Rolph ${ }^{a}$

Cost of holographic path integrals

A. Ramesh Chandra, ${ }^{a}$ Jan de Boer, ${ }^{a}$ Mario Flory, ${ }^{b}$ Michal P. Heller, ${ }^{c}$ Sergio Hörtner, ${ }^{d}$ and Andrew Rolph ${ }^{a}$
a Inctitato frer Thonvotinal Dhaciese ITrinoreitar if 4 metordam

See also talk by Andrew later! $\Omega_{\mathbb{Q}}$

Overview

- Introduction

- A first example
- Kinematic space

- Generic flow equations
- What does $K_{m}^{n} K_{n}^{m}-K^{2}=0$ mean?
- Summary

Introduction

Introduction

- One important approach to complexity is path integral optimization
$\left[\begin{array}{l}\text { Caputa et al. } \\ 2017 \mathrm{a}\end{array}\right]\left[\begin{array}{l}\text { Caputa et al. } \\ 2017 \mathrm{~b}\end{array}\right]$.

- Further progress came in $\left[\begin{array}{l}\text { Boruch et al. } \\ 2021 \mathrm{~b}\end{array}\right]$:
- Idea: Compute action between boundary cutoff and bulk surface Q, extremise w.r.t. scale factor of metric of Q.
- Add tension term T to action on $Q \rightarrow$ plays role of emergent time.
- This provides finite cutoff corrections to Liouville approach beyond $\partial \phi \ll e^{\phi}$.
- Further work in $\left[\begin{array}{l}\text { Boruch et al. } \\ 2021 \mathrm{a}\end{array}\right]\left[\begin{array}{l}\text { Caputa et al. } \\ 2022\end{array}\right]\left[\begin{array}{l}\text { Camargo et al. } \\ 2022\end{array}\right]$.
- Around the same time, we were considering a similar setup, leading up to $\left[\begin{array}{l}\text { Chandra et al. } \\ 2021\end{array}\right]$.

Basic idea

- Consider a subregion M of Euclidean Poincaré AdS_{3}.
- Introduce two time-slices $t=t_{i / f}$ corresponding to the ground states $|0\rangle_{z_{i / f}}$ at different values of the radial cutoff.
- The radial boundary is at finite cutoff, $z=\rho(t)$.
- Proposal: Complexity of the circuit that maps between $|0\rangle_{z_{i / f}}$ is given by the gravitational action on M.

A first example

Simple example - setup

We consider Euclidean AdS, with the curvature scale $l_{A d S}=1$:

$$
\begin{equation*}
d s^{2}=\frac{d z^{2}+d t^{2}+d x^{2}}{z^{2}} \tag{1}
\end{equation*}
$$

Bulk action:

$$
\begin{equation*}
I=\frac{1}{\kappa} \int_{M} d^{3} x \sqrt{G}(\mathcal{R}+2)+\frac{2}{\kappa} \int_{\partial M} d^{2} x \sqrt{g} K+I_{c} \tag{2}
\end{equation*}
$$

- M is the bulk region bounded by $\rho(t) \leq z \leq \infty$ and $t_{i} \leq t \leq t_{f}$
- Bulk term
- Surface terms
- Joint terms $I_{c}=\frac{2}{\kappa} \int d x \sqrt{j} \alpha\left[\begin{array}{l}\text { Hartle and Sorkin } \\ 1981\end{array}\right]\left[\begin{array}{l}\text { Hayward } \\ 1993\end{array}\right]$

Simple example - boundary surface

We investigate the bulk region M bounded by $\rho(t) \leq z \leq \infty$ and $t_{i} \leq t \leq t_{f}$.

The induced line element on the boundary surface is

$$
\begin{equation*}
d s^{2}=\frac{\left(1+\dot{\rho}^{2}\right) d t^{2}+d x^{2}}{\rho^{2}} \tag{3}
\end{equation*}
$$

hence

$$
\begin{align*}
& R=\frac{2\left(\rho \ddot{\rho}-\dot{\rho}^{2}\left(1+\dot{\rho}^{2}\right)\right)}{\left(1+\dot{\rho}^{2}\right)^{2}} \tag{4}\\
& K=\frac{\rho \ddot{\rho}+2\left(1+\dot{\rho}^{2}\right)}{\left(1+\dot{\rho}^{2}\right)^{3 / 2}} \tag{5}
\end{align*}
$$

Simple example - action

We obtain

$$
\begin{align*}
I & =\frac{-4}{\kappa} \int_{M} d^{2} x \int_{z=\rho}^{\infty} \frac{d z}{z^{3}}+\frac{2}{\kappa} \int_{\partial M} d^{2} x \frac{\rho \ddot{\rho}+2\left(1+\dot{\rho}^{2}\right)}{\rho^{2}\left(1+\dot{\rho}^{2}\right)}+I_{c}[\rho] \\
& =\frac{2 V_{x}}{\kappa} \int_{t_{i}}^{t_{f}} d t \frac{\rho \ddot{\rho}+\left(1+\dot{\rho}^{2}\right)}{\rho^{2}\left(1+\dot{\rho}^{2}\right)}+I_{c}[\rho] \tag{6}
\end{align*}
$$

for the on-shell bulk action $\left(V_{x}=\int d x\right)$. For the corner term, we also find

$$
\begin{equation*}
I_{c}=\frac{2 V_{x}}{\kappa}\left(\frac{\pi / 2-\arctan \dot{\rho}\left(t_{f}\right)}{z_{f}}+\frac{\pi / 2+\arctan \dot{\rho}\left(t_{i}\right)}{z_{i}}\right) \tag{7}
\end{equation*}
$$

Integrating by parts, this action can be written only using first derivatives of ρ, yielding

$$
\begin{equation*}
I=\frac{2 V_{x}}{\kappa} \int_{t_{i}}^{t_{f}} d t\left(\frac{1}{\rho^{2}}+\frac{\dot{\rho} \arctan \dot{\rho}}{\rho^{2}}\right)+\frac{\pi V_{x}}{\kappa}\left(\frac{1}{z_{f}}+\frac{1}{z_{i}}\right) \tag{8}
\end{equation*}
$$

Simple example - action

We obtain

$$
\begin{align*}
I & =\frac{-4}{\kappa} \int_{M} d^{2} x \int_{z=\rho}^{\infty} \frac{d z}{z^{3}}+\frac{2}{\kappa} \int_{\partial M} d^{2} x \frac{\rho \ddot{\rho}+2\left(1+\dot{\rho}^{2}\right)}{\rho^{2}\left(1+\dot{\rho}^{2}\right)}+I_{c}[\rho] \\
& =\frac{2 V_{x}}{\kappa} \int_{t_{i}}^{t_{f}} d t \frac{\rho \ddot{\rho}+\left(1+\dot{\rho}^{2}\right)}{\rho^{2}\left(1+\dot{\rho}^{2}\right)}+I_{c}[\rho] \tag{6}
\end{align*}
$$

for the on-shell bulk action $\left(V_{x}=\int d x\right)$. For the corner term, we also find

$$
\begin{equation*}
I_{c}=\frac{2 V_{x}}{\kappa}\left(\frac{\pi / 2-\arctan \dot{\rho}\left(t_{f}\right)}{z_{f}}+\frac{\pi / 2+\arctan \dot{\rho}\left(t_{i}\right)}{z_{i}}\right) \tag{7}
\end{equation*}
$$

Integrating by parts, this action can be written only using first derivatives of ρ, yielding

$$
\begin{equation*}
I=\frac{2 V_{x}}{\kappa} \int_{t_{i}}^{t_{f}} d t \quad\left(\frac{1}{\rho^{2}}+\frac{\dot{\rho} \arctan \dot{\rho}}{\rho^{2}}\right)+\frac{\pi V_{x}}{\kappa}\left(\frac{1}{z_{f}}+\frac{1}{z_{i}}\right) \tag{8}
\end{equation*}
$$

Simple example - eoms

The equations of motion obtained by extremizing (8) read

$$
\begin{equation*}
\frac{\rho \ddot{\rho}+\left(1+\dot{\rho}^{2}\right)}{\rho^{3}\left(1+\dot{\rho}^{2}\right)^{2}}=0 \tag{9}
\end{equation*}
$$

The generic solution to (30) reads

$$
\begin{equation*}
\rho(t)=\sqrt{\mathfrak{R}^{2}-\left(t-t_{0}\right)^{2}} \tag{10}
\end{equation*}
$$

and describes semi-circular arcs of radius \mathfrak{R}. The equal time slice $\dot{\rho} \rightarrow \infty$ corresponds to the limit of infinite radius.

Simple example - on-shell action

With boundary being $\rho\left(t_{f}\right)=z_{f}$ and $\rho\left(t_{i}\right)=z_{i}$, the value of the Euclidean action in the first term of (8) is

$$
\begin{equation*}
I=\frac{2 V_{x}}{\kappa}\left(\frac{1}{z_{f}} \arctan \frac{z_{i}^{2}-z_{f}^{2}+\Delta t^{2}}{2 z_{f} \Delta t}-\frac{1}{z_{i}} \arctan \frac{z_{i}^{2}-z_{f}^{2}-\Delta t^{2}}{2 z_{i} \Delta t}\right) \tag{11}
\end{equation*}
$$

Now extremising w.r.t. Δt (keeping $z_{i} \neq z_{f}$ fixed) gives $\Delta t=0$, i.e. $\mathfrak{R} \rightarrow \infty$, and

$$
\begin{equation*}
I_{\min }=\frac{c \pi V_{x}}{24}\left(\frac{1}{z_{f}}-\frac{1}{z_{i}}\right) \tag{12}
\end{equation*}
$$

\rightarrow We recover the complexity=volume proposal?!

Simple example - comparison to Liouville

For $\dot{\rho} \ll 1$,

$$
\begin{equation*}
I=\frac{2 V_{x}}{\kappa} \int_{t_{i}}^{t_{f}} d t\left(\frac{1}{\rho^{2}}+\frac{\dot{\rho} \arctan \dot{\rho}}{\rho^{2}}\right) \approx \frac{2 V_{x}}{\kappa} \int d t\left(\frac{1}{\rho^{2}}+\frac{\dot{\rho}^{2}}{\rho^{2}}\right) \tag{13}
\end{equation*}
$$

which, assuming no x-dependence, is equivalent to the Liouville Lagrangian

$$
\begin{equation*}
S_{L}=\frac{c}{24 \pi} \int d t \int d x\left(\eta e^{2 \omega}+\left(\partial_{t} \omega\right)^{2}+\left(\partial_{x} \omega\right)^{2}\right) \tag{14}
\end{equation*}
$$

after a change of variables $\rho(t) \rightarrow(1 / \sqrt{\eta}) e^{-\omega(t)}$. The equations of motion derived from (13) take the form

$$
\begin{equation*}
\frac{\rho \ddot{\rho}+\left(1-\dot{\rho}^{2}\right)}{\rho^{3}}=0 \tag{15}
\end{equation*}
$$

Comparison to Boruch et al.

Note that $\left[\begin{array}{l}\text { Boruch et al. } \\ 2021 \mathrm{~b}\end{array}\right]$ investigates a setup similar to us, and up to notation (6) also appears in the appendix of that paper. Following
$\left[\begin{array}{l}\text { Boruch et al. } \\ 2021 \mathrm{~b}\end{array}\right]$, we introduce a conformal time u, with

$$
\begin{equation*}
d u=\sqrt{1+\dot{\rho}(t)^{2}} d t \tag{16}
\end{equation*}
$$

such that the line element (3) is transformed into the conformal gauge form

$$
\begin{equation*}
d s^{2}=\frac{d u^{2}+d x^{2}}{\varrho(u)^{2}} \tag{17}
\end{equation*}
$$

with the new $\varrho(u(t))=\rho(t)$. The action now reads $\left[\begin{array}{l}\text { Boruch et al. } \\ 2021 \mathrm{~b}\end{array}\right]$

$$
\begin{equation*}
I=\frac{2 V_{x}}{\kappa} \int_{u_{i}[\varrho]}^{u_{f}[\varrho]} d u\left(\frac{\sqrt{1-\varrho^{\prime 2}}+\varrho^{\prime} \arcsin \varrho^{\prime}}{\varrho^{2}}\right) \tag{18}
\end{equation*}
$$

Comparison to Boruch et al.

From this, $\left[\begin{array}{l}\text { Boruch et al. } \\ 2021 \mathrm{~b}\end{array}\right]$ obtains eoms

$$
\begin{equation*}
\frac{\varrho \varrho^{\prime \prime}+2\left(1-\varrho^{\prime 2}\right)}{\varrho^{3}\left(1-\varrho^{\prime 2}\right)^{2}}=0 \tag{19}
\end{equation*}
$$

which are inequivalent to our eoms, which in terms of ϱ and u take the Liouville form:

$$
\begin{equation*}
\frac{\varrho \varrho^{\prime \prime}+\left(1-\varrho^{\prime 2}\right)}{\varrho^{3}}=0 \tag{20}
\end{equation*}
$$

Problem: Integral $\int_{u_{i}[\varrho]}^{u_{f}[\varrho]} d u$ has ρ-dependent boundary conditions!
$\rightarrow\left[\begin{array}{l}{\left[\begin{array}{l}\text { Boruch } \\ 2021 \mathrm{~b}\end{array} \mathrm{al} .\right.}\end{array}\right]$ and $\left[\begin{array}{l}\text { Chandra et al. } \\ 2021\end{array}\right]$ study different variational problems!

Kinematic space

Kinematic space approach

Let us analyse the same problem from a kinematic space $\left[\begin{array}{l}\text { Czech et al. } \\ 2015\end{array}\right]$ point of view:

At each point $(z=\rho(t), t, 0)$, there is a geodesic (with endpoints at $\left.\left(t_{1}(t), t_{2}(t)\right)\right)$ tangent to the cutoff surface. We find:

$$
\begin{aligned}
& t_{1,2}(t)= \\
& t+\rho \dot{\rho} \pm \rho \sqrt{\dot{\rho}^{2}+1}
\end{aligned}
$$

Kinematic space approach

Kinematic space (for $x=$ const. slice):

$$
\begin{equation*}
d s_{k s}^{2}=\frac{-d t_{1} d t_{2}}{\left(t_{1}-t_{2}\right)^{2}} \tag{22}
\end{equation*}
$$

Consider now the action

$$
\begin{equation*}
S_{k s} \sim \int \frac{d x}{\rho} d s_{k s}(t) \tag{23}
\end{equation*}
$$

with the coordinate x in units of the cutoff ρ. This results in

$$
\begin{equation*}
S_{k s} \sim \int d t d x\left|\frac{\rho \ddot{\rho}+\left(1+\dot{\rho}^{2}\right)}{\rho^{2}\left(1+\dot{\rho}^{2}\right)}\right| \tag{24}
\end{equation*}
$$

which agrees with the bulk action in the form (6) as long as $\rho \ddot{\rho} \geq-\left(1+\dot{\rho}^{2}\right)$ (path in kinematic space is timelike!).

For the solutions of (30), (24) vanishes identically!

Generic flow equations

Generic Flow Equations

We use the ADM formalism $\left[\begin{array}{l}\text { Arnowitt et al. } \\ 1962\end{array}\right]$ to write the metric as

$$
\begin{equation*}
d s^{2}=N^{2} d r^{2}+g_{m n}(x, r)\left(d x^{m}+N^{m} d r\right)\left(d x^{n}+N^{n} d r\right) \tag{25}
\end{equation*}
$$

and the Lagrangian in terms of canonical variables

$$
\begin{gather*}
\mathcal{L}=\sqrt{g}\left(\pi^{m n} \partial_{r} g_{m n}-N H-N^{m} H_{m}\right), \tag{26}\\
\pi_{m n}=-\left(K_{m n}-K g_{m n}\right) \tag{27}
\end{gather*}
$$

where the lapse and shift functions appear as Lagrange multipliers enforcing

$$
\begin{equation*}
H=H^{m}=0 \tag{28}
\end{equation*}
$$

Generic Flow Equations

To describe the flow we imagine starting with a surface at constant r and moving the cutoff slightly so that $r \rightarrow r+\epsilon(x)$. Then

$$
\begin{equation*}
\delta_{\epsilon} S=2 \int \sqrt{g} \epsilon(x)\left(K^{m n} K_{m n}-K^{2}\right) \tag{29}
\end{equation*}
$$

We hence obtain the flow equations

$$
\begin{equation*}
K_{m}^{n} K_{n}^{m}-K^{2}=0 . \tag{30}
\end{equation*}
$$

What does $K_{m}^{n} K_{n}^{m}-K^{2}=0$ mean?

Equation of Motion

Our considerations in $\left[\begin{array}{l}\text { Chandra et al. } \\ 2021\end{array}\right]\left[\begin{array}{l}\text { Chandra et al. } \\ 2023\end{array}\right]$ led us to study co-dimension one surfaces Q embedded into AdS according to the equation

$$
\begin{equation*}
K_{m}^{n} K_{n}^{m}-K^{2}=0 \tag{30}
\end{equation*}
$$

Notation $\left[\begin{array}{l}\text { Poisson } \\ 2004\end{array}\right]$:

- m, n, \ldots : indices for surface coordinates $y^{m} ; \mu, \nu, \ldots$: indices for ambient space coordinates x^{μ}.
- $e_{a}^{\alpha}=\partial x^{\alpha} / \partial y^{a}:$ projectors to surface tangent space; n^{α} : normal vector
- $g_{m n}$: induced metric; $G_{\mu \nu}$: bulk metric.
- $K_{m n}$: extrinsic curvature tensor of the surface; $K=K_{n}^{n}$.
- \mathcal{R} : ambient space (bulk) curvature; R : induced curvature etc.

Equation of Motion

Our considerations in $\left[\begin{array}{l}\text { Chandra et al. } \\ 2021\end{array}\right]\left[\begin{array}{l}\text { Chandra et al. } \\ 2023\end{array}\right]$ led us to study co-dimension one surfaces Q embedded into AdS according to the equation

$$
\begin{equation*}
K_{m}^{n} K_{n}^{m}-K^{2}=0 \tag{30}
\end{equation*}
$$

Brute force ansatz:

- Define embedding $z=f(t, x)$.
- Calculate $K_{i j}\left[f, f^{\prime}, f^{\prime \prime}, \dot{f}, \ldots\right]$.
- Solve (30) as nonlinear PDE for f
- Problem is only tractable in particularly simple/symmetric setups. See $\left[\begin{array}{l}\text { Chandra et al. } \\ 2021\end{array}\right]$.

Equation of Motion

Our considerations in $\left[\begin{array}{l}\text { Chandra et al. } \\ 2021\end{array}\right]\left[\begin{array}{l}\text { Chandra et al. } \\ 2023\end{array}\right]$ led us to study co-dimension one surfaces Q embedded into AdS according to the equation

$$
\begin{equation*}
K_{m}^{n} K_{n}^{m}-K^{2}=0 \tag{30}
\end{equation*}
$$

Motivation 1:

- Is there a more elegant approach?
- E.g., (30) is matrix equation for K_{m}^{n}.
- Given a solution K_{m}^{n}, can we find corresponding embedding?
- Similar approach in $\left[\begin{array}{l}\text { Fonda et al. } \\ 2017\end{array}\right]$ to holo. EE. in higher curvature theories.

Equation of Motion

Our considerations in $\left[\begin{array}{l}\text { Chandra et al. } \\ 2021\end{array}\right]\left[\begin{array}{l}\text { Chandra et al. } \\ 2023\end{array}\right]$ led us to study co-dimension one surfaces Q embedded into AdS according to the equation

$$
\begin{equation*}
K_{m}^{n} K_{n}^{m}-K^{2}=0 . \tag{30}
\end{equation*}
$$

Motivation 2:
In vacuum, due to the Hamiltonian constraint

$$
\begin{equation*}
0 \equiv H=R-2 \Lambda-\left(K_{m}^{n} K_{n}^{m}-K^{2}\right) \tag{31}
\end{equation*}
$$

equation (30) demands that the Ricci curvature R of the induced metric of the surface is constant. Specifically, for $d=3$ and AdS-radius $\Lambda=-1$, then $\mathcal{R}=-6$ and $R=-2 \rightarrow$ looking for constant curvature surfaces.

Darboux's observation

As pointed out in $\left[\begin{array}{l}\text { Barbot et al. } \\ 2011\end{array}\right]$, the French mathematician Darboux once remarked that:

It can be said that the total curvature has more importance in Geometry; as it depends only on the line element, it comes into play in all questions concerning the deformation of surfaces. In mathematical physics, on the contrary, it is the mean curvature [i.e. extrinsic curvature] which seems to play the dominant role $\left[\begin{array}{l}\text { Darboux } \\ 1889\end{array}\right]$.

Jean-Gaston Darboux 1842-1917

Darboux's observation

More than 130 years later, Darboux's observation still seems to hold true, at least in AdS/CFT!

- The Ryu-Takayanagi formula $\left[\begin{array}{l}\text { Ryu and Takayanagi } \\ 2006\end{array}\right]$ demonstrates the role of surfaces with constant (vanishing) extrinsic curvature in the holographic dictionary.
- "Darboux's question" in AdS/CFT:

Do surfaces of constant intrinsic curvature have a role in AdS/CFT, and if yes, which one?

Jean-Gaston Darboux
1842-1917

Solving the equations of motion

Equations of motion:

$$
\begin{align*}
K_{m}^{n} K_{n}^{m} & -K^{2}=0 \tag{30}\\
& \Leftrightarrow \\
R & =2 \Lambda(\text { in vacuum }) \tag{32}\\
& \Leftrightarrow \\
\operatorname{det} K_{m n} & =0\left(\text { in } d_{\text {induced }}=2\right) \tag{33}
\end{align*}
$$

Ansatz:

$$
\begin{equation*}
K_{m n} \equiv m_{m} m_{n} k \tag{34}
\end{equation*}
$$

(generic in $d_{\text {induced }}=2$, subset of solutions in $d_{\text {induced }}>2$)

Solving the equations of motion

Codazzi equations $\left[\begin{array}{l}\text { Poisson } \\ 2004\end{array}\right]$:

$$
\begin{align*}
\mathcal{R}_{\alpha \beta \gamma \delta} e_{a}^{\alpha} e_{b}^{\beta} e_{c}^{\gamma} e_{d}^{\delta} & =R_{a b c d} \pm\left(K_{a d} K_{b c}-K_{a c} K_{b d}\right) \tag{35}\\
\mathcal{R}_{\mu \beta \gamma \delta} n^{\mu} e_{b}^{\beta} e_{c}^{\gamma} e_{d}^{\delta} & =K_{b c \mid d}-K_{b d \mid c} \tag{36}\\
\left(\mathcal{R}_{\alpha \beta}-\frac{1}{2} \mathcal{R} G_{\alpha \beta}\right) n^{\beta} e_{a}^{\alpha} & =K_{a \mid b}^{b}-K_{, a} \tag{37}
\end{align*}
$$

($\mathcal{R} \sim$ ambient; $R \sim$ induced geometry; $e_{a}^{\alpha} \sim$ projectors; $n^{\beta} \sim$ normal $)$

Solving the equations of motion

Codazzi equations $\left[\begin{array}{l}\text { Poisson } \\ 2004\end{array}\right]$, using ansatz $K_{m n} \equiv m_{m} m_{n} k$:

$$
\begin{align*}
& \mathcal{R}_{\alpha \beta \gamma \delta} e_{a}^{\alpha} e_{b}^{\beta} e_{c}^{\gamma} e_{d}^{\delta}=R_{a b c d} \pm\left(K_{a d} K_{b c}-K_{a c} K_{b d}\right) \tag{35}\\
\Rightarrow & \mathcal{R}_{\alpha \beta \gamma \delta} e_{a}^{\alpha} e_{b}^{\beta} e_{c}^{\gamma} e_{d}^{\delta}=R_{a b c d} \pm 0 \tag{38}
\end{align*}
$$

($\mathcal{R} \sim$ ambient; $R \sim$ induced geometry; $e_{a}^{\alpha} \sim$ projectors; $n^{\beta} \sim$ normal $)$

Hence if the ambient space is (locally) maximally symmetric

$$
\begin{equation*}
\mathcal{R}_{\alpha \beta \gamma \delta}=\frac{\mathcal{R}}{d(d-1)}\left(G_{\alpha \gamma} G_{\beta \delta}-G_{\alpha \delta} G_{\beta \gamma}\right) \tag{39}
\end{equation*}
$$

then so is the induced metric of the surface with $R=\frac{d-2}{d} \mathcal{R}$.

Solving the equations of motion

Furthermore, $G_{\alpha \beta} n^{\beta} e_{a}^{\alpha}=0$ (ambient space is locally AdS), and (setting $k= \pm 1, m_{n}$ unnormalised) we find:

$$
\begin{align*}
& \mathcal{R}_{\mu \beta \gamma \delta} n^{\mu} e_{b}^{\beta} e_{c}^{\gamma} e_{d}^{\delta}=K_{b c \mid d}-K_{b d \mid c} \tag{36}\\
\Rightarrow & 0=m_{c} \nabla_{d} m_{b}+m_{b} \nabla_{d} m_{c}-m_{d} \nabla_{c} m_{b}-m_{b} \nabla_{c} m_{d} \tag{40}
\end{align*}
$$

Now, set $d=3$ and introduce $l^{a} m_{a}=0, l^{a} l_{a}=$ const. Thus:

$$
\begin{gather*}
0=m_{d} l^{c} l^{b} \nabla_{c} m_{b} \Rightarrow 0=l^{c} l^{b} \nabla_{c} m_{b} . \tag{41}\\
l^{b} m_{b}=0 \Rightarrow 0=l^{c} \nabla_{c}\left(l^{b} m_{b}\right)=\left(l^{c} \nabla_{c} l^{b}\right) m_{b}+\underbrace{l^{c} l^{b} \nabla_{c} m_{b}}_{=0} . \tag{42}
\end{gather*}
$$

Also, $\quad\left(l^{c} \nabla_{c} l^{b}\right) \quad l_{b} \propto l^{c} \nabla_{c} l^{b} l_{b}=0$ and hence $l^{c} \nabla_{c} l^{b}=0$ - geodesic equation.

Solving the equations of motion

Recall:

$$
\begin{equation*}
l^{a} m_{a}=0 \Rightarrow K_{a b} l^{a} l^{b}=0 \tag{43}
\end{equation*}
$$

The relation between the covariant derivative in the ambient space $X_{; \beta}$ and the covariant derivative in the induced metric $X_{\mid b}$ gives $\left[\begin{array}{l}\text { Poisson } \\ 2004\end{array}\right]$

$$
\begin{equation*}
l_{; \beta}^{\alpha} e_{b}^{\beta}=l_{\mid b}^{a} e_{a}^{\alpha} \pm l^{a} K_{a b} n^{\alpha} . \tag{44}
\end{equation*}
$$

Contracting (44) with l^{b}, we find

$$
\begin{equation*}
\underbrace{l^{\beta} l_{; \beta}^{\alpha}}=\underbrace{l^{b} l_{1 b}^{a}} \quad e_{a}^{\alpha} \pm l^{b} l^{a} K_{a b} n^{\alpha} \tag{45}
\end{equation*}
$$

ambient space geodesic eq. induced metric geodesic eq.

The surface is foliated by curves which are geodesics in the ambient space.

Solving the equations of motion

The surface with $R=-2$ is foliated by curves which are geodesics in the ambient space (with $\mathcal{R}=-6$).

Analogue statement in \mathbb{R}^{3} :
All developable surfaces (i.e. $R=0$) are ruled surfaces (i.e. foliated by straight lines) $\left[\begin{array}{l}\text { Krivoshapko and Ivanov } \\ 2015\end{array}\right]$, however the converse is not true.

Example 1: Euclidean AdS_{3}, Poincaré-patch

Background:

$$
\begin{equation*}
d s^{2}=\frac{1}{z^{2}}\left(d t^{2}+d x^{2}+d z^{2}\right) \tag{46}
\end{equation*}
$$

Solution for strip of varying width:

$$
\begin{equation*}
z(t, x)=\sqrt{r(t)^{2}-x^{2}} \tag{47}
\end{equation*}
$$

Genralizes case of constant width studied in $\left[\begin{array}{l}\text { Chandra et al. } \\ 2021\end{array}\right]$.

Example 2: Uniqueness?

Background:

$$
\begin{equation*}
d s^{2}=\frac{1}{z^{2}}\left(d t^{2}+d x^{2}+d z^{2}\right) \tag{48}
\end{equation*}
$$

For elliptic boundary region, there are two hypersurfaces satisfying (30) with the same boundary condition at $z=0$. For one we find $K<0$ everywhere, while for the other one we find $K>0$ everywhere.

Example 3: Lorentzian (global) AdS_{3}, specelike surfaces

Background:

$$
\begin{equation*}
d s^{2}=\frac{1}{\cos (\theta)^{2}}\left(-d t^{2}+d \theta^{2}+\sin (\theta)^{2} d \phi^{2}\right) \tag{49}
\end{equation*}
$$

Solution:

$$
\begin{equation*}
t(\phi, \theta)=t_{b d y}\left[\arctan \left(\sqrt{\csc ^{2}(\theta) \sec ^{2}(\phi)-1}\right)\right] \tag{50}
\end{equation*}
$$

where $t_{b d y}[\phi]$ is the boundary condition at the asymptotic boundary $\theta=\pi / 2$ which we assume to be symmetric under $\phi \rightarrow-\phi$.

Example 4: "Lemons"

Let's now search for timelike surfaces in Lorentzian AdS.

Timelike oscillating geodesic:

$$
\begin{equation*}
t(\theta)= \pm \arctan \left(\frac{E \sin (\theta)}{\sqrt{-1+E^{2} \cos (\theta)^{2}}}\right), \quad \phi=\text { const } \tag{51}
\end{equation*}
$$

where the "energy" $E>1$ of the geodesic is related to its turning point $\theta_{\max }$ by $\theta_{\max }=\arccos 1 / E$. we can construct surfaces of the form

$$
\begin{equation*}
t(\theta, \phi)= \pm \arctan \left(\frac{E(\phi) \sin (\theta)}{\sqrt{-1+E(\phi)^{2} \cos (\theta)^{2}}}\right)+\text { const } \tag{52}
\end{equation*}
$$

where we have promoted E to a ϕ-dependent parameter.
K diverges at $\theta=0$ where the surfaces will have a conical singularity.

From top-left to bottom-right: $E(\phi)=\sqrt{2}, E(\phi)=2 \sin (2 \phi)+\cos (4 \phi)+5, E(\phi)=5 \sin ^{2}\left(\frac{\phi}{4}\right)+\sqrt{2}$, $E(\phi)=\tan ^{4}\left(\frac{\phi}{2}\right)+\sqrt{2}, E \rightarrow \infty$, and
$E(\phi)=\left(\frac{\cos (\phi)}{\sin (\phi)}\right)^{2}+2$ for $0<\phi<\pi, E(\phi)=-i\left(\left(\frac{\cos (\phi)}{\sin (\phi)}\right)^{2}+2\right)$ for $\pi<\phi<2 \pi$.

Lemons, Observations:

- All lemons have "height" $\Delta t=\pi$.
- Action inside finite Lemons is
$I_{E H}+I_{G H Y}=4 \pi^{2}$, independent of E by construction: These surfaces bound regions of the bulk whose action does not change under infinitesimal deformations of their boundary.
- Imaginary values of $E(\phi)$ lead to spacelike surfaces that reach the boundary.
- $t(\theta, \phi)=\theta$, for $E \rightarrow \infty$; surface becomes null boundary of WDW patch.

Lemons, Questions/Speculations:

- All lemons have "height" $\Delta t=\pi$.
\rightarrow Is there a specific $T \bar{T}$ deformation that describes a theory living on this surface?
- Action inside finite Lemons is
$I_{E H}+I_{G H Y}=4 \pi^{2}$, independent of E.
- Imaginary values of $E(\phi)$ lead to spacelike surfaces that reach the boundary.
\rightarrow Complexify coordinates?
- $t(\theta, \phi)=\theta$, for $E \rightarrow \infty$; surface becomes null boundary of WDW patch.
\rightarrow Value of action in this limit?
$\rightarrow E \gg 1$ as regularisation of WdW-patch?
\rightarrow WdW patch arises naturally, without "infinite tension" limit of $\left[\begin{array}{l}\text { Boruch et al. } \\ 2021 \mathrm{a}\end{array}\right]$.

Kinematic space connection?

The solutions to the flow equation

$$
\begin{equation*}
K_{m}^{n} K_{n}^{m}-K^{2}=0 \tag{30}
\end{equation*}
$$

are foliated by geodesics of the ambient space.

That means: these surfaces are described by curves in the space of geodesics
(\sim kinematic space $\left[\begin{array}{l}\text { Czech } \\ 2015\end{array}\right.$ et al. $]$,
generalised in

$$
\left.\left[\begin{array}{l}
\text { Czech et al. } \\
2016
\end{array}\right]\left[\begin{array}{l}
\text { Czech et al. } \\
2020
\end{array}\right]\left[\begin{array}{l}
\text { Chagnet et al. } \\
2022
\end{array}\right]\right) .
$$

\Rightarrow Can we phrase our results from a kinematic space perspective?

Summary

Summary and outlook

- Groundwork laid in $\left[\begin{array}{l}\text { Caputa et al. } \\ 2017 \mathrm{a}\end{array}\right]\left[\begin{array}{l}\text { Caputa et al. } \\ 2017 \mathrm{~b}\end{array}\right]\left[\begin{array}{l}\text { Boruch et al. } \\ 2021 \mathrm{~b}\end{array}\right]$ with path integral optimization.
- In simple Euclidean case, extremising action under a dynamic cutoff surface reproduces equal time slice/CV proposal [$\left[\begin{array}{l}\text { Chandra et al. } \\ 2021\end{array}\right]$.
- Generalisation to Lorentzian case is non-trivial, with many challenges (e.g. boundedness of action) $\left[\begin{array}{l}\text { Chandra et al. } \\ 2023\end{array}\right]$.
- Universal flow equation derived in $\left[\begin{array}{l}\text { Chandra et al. } \\ 2021\end{array}\right]$ can be solved quite generally \rightarrow suggests konnection to kinematic space.
- See also next talk by Andrew! Ω_{2}

Gauss-Bonnet theorem

Implications of the Gauss-Bonnet theorem

Consider the Gauss-Bonnet theorem $\left[\begin{array}{l}\text { Troyanov } \\ 1991\end{array}\right]$

$$
\begin{equation*}
\int_{Q} \frac{R}{2} d V+\int_{\partial Q} k_{g} d s+\sum_{\text {corners } c} \alpha_{c}+\sum_{\text {conical sing. } s} \beta_{s}=2 \pi \chi, \tag{53}
\end{equation*}
$$

As we are searching for $2 d$ surfaces of constant scalar curvature, we find

$$
\begin{equation*}
\int_{Q} \frac{R}{2} d V=\frac{R}{2} V<0 \tag{54}
\end{equation*}
$$

So for $\chi \geq 0$ (includes all Lorentzian cases), surface either needs to reach boundary or have conical singularities!

Conical singularities in the Gauss-Bonnet formula

In order to derive the contribution of conical singularities, we start with

$$
\begin{equation*}
\int_{Q} \frac{R}{2} d V+\int_{\partial Q} k_{g} d s+\sum_{\text {(old) corners } c} \alpha_{c}+X_{\text {conical sing. }}=2 \pi \chi \tag{55}
\end{equation*}
$$

We resolve the singularity by introducing a cut:

$$
\begin{equation*}
\int_{Q} \frac{R}{2} d V+\int_{\partial Q} k_{g} d s+\sum_{\text {(old) corners } c} \alpha_{c}+\sum_{\text {new corners } c} \alpha_{c}=2 \pi(\chi-1) \tag{56}
\end{equation*}
$$

Comparing (55) and (56), we find

$$
\begin{equation*}
X_{\text {conical sing. }}=\sum_{\text {new corners } c} \alpha_{c}+2 \pi=\alpha_{c 1}+\alpha_{c 2}+2 \pi=\delta \tag{57}
\end{equation*}
$$

with $\alpha_{c 1}=-\pi . \alpha_{c 2}=-(\pi-\delta)$, and deficit angle δ.

Left: Introducing a cut to derive contribution from conical singularities in Euclidean case.

Right: Lorentzian deficit angle for lemon surface.

Lorentzian case

For the Lorentzian Gauss-Bonnet theorem, see e.g. $\left[\begin{array}{c}\text { Helzer } \\ 1974\end{array}\right]$. One has to define the (always real valued) oriented Lorentzian angle δ between two future pointing normalised timelike vectors X and Y to satisfy

$$
\begin{equation*}
\cosh (\delta)=-X \cdot Y \tag{58}
\end{equation*}
$$

The Lorentzian Gauss-Bonnet-theorem then takes the form

$$
\begin{equation*}
\int_{Q} \frac{R}{2} d V+\int_{\partial Q} k_{g} d s+\sum_{\text {corners } c} \alpha_{c}+\sum_{\text {conical sing. } s} \beta_{s}=0 \tag{59}
\end{equation*}
$$

Firstly, the right hand side automatically vanishes $(\chi \equiv 0)$, secondly, traversing a closed timelike geodesic polygon in flat space yields the total Lorentzian angle

$$
\begin{equation*}
\alpha_{12}+\alpha_{23}+\ldots+\alpha_{n 1}=0 . \tag{60}
\end{equation*}
$$

Application to Lemons

Assume E indep. of ϕ. Induced metric:

$$
\begin{equation*}
d s^{2}=\frac{1}{\cos \left(\theta_{2}\right)^{2}}\left(-d t_{2}^{2}+d \theta_{2}^{2}\right) \tag{61}
\end{equation*}
$$

with

$$
\begin{equation*}
4 \operatorname{arctanh}\left(\tan \left(\frac{\theta_{\max , 2}}{2}\right)\right)=2 \pi \tan \left(\theta_{\max , 3}\right) \tag{62}
\end{equation*}
$$

Hence:

$$
\begin{equation*}
\frac{R V}{2}=-4 \pi \tan \left(\theta_{\max , 3}\right)=-4 \pi \sqrt{E^{2}-1} \tag{63}
\end{equation*}
$$

Application to Lemons

$$
\begin{equation*}
\frac{R V}{2}=-4 \pi \tan \left(\theta_{\max , 3}\right)=-4 \pi \sqrt{E^{2}-1} \tag{63}
\end{equation*}
$$

Tangent vectors of boundary geodesics:

$$
\begin{equation*}
X_{ \pm}^{m}=\binom{X_{ \pm}^{t_{2}}}{X_{ \pm}^{\theta_{2}}}=\binom{E_{2}}{ \pm \sqrt{E_{2}^{2}-1}} \tag{64}
\end{equation*}
$$

Hence:

$$
\begin{align*}
& \delta_{\text {future conical sing. }}=\operatorname{arccosh}\left(-X_{+} \cdot X_{-}\right)=2 \pi \tan \left(\theta_{\max , 3}\right) \tag{65}\\
& =\delta_{\text {past conical sing. }} \tag{66}
\end{align*}
$$

Gaus-Bonnet theorem

$$
\begin{equation*}
\frac{R V}{2}+\delta_{\text {past conical sing. }}+\delta_{\text {future conical sing. }}=0 \tag{67}
\end{equation*}
$$

is satisfied.

Lemons in higher dimensions

"Lemons" in higher dimensions

Let's consider global Lorentzian AdS_{4},

$$
\begin{equation*}
d s^{2}=\frac{1}{\cos (\theta)^{2}}\left(-d t^{2}+d \theta^{2}+\sin (\theta)^{2} d \psi^{2}+\sin (\theta)^{2} \sin (\psi)^{2} d \phi^{2}\right) \tag{68}
\end{equation*}
$$

(boundary at $\theta=\pi / 2$) and assume rotational symmetry. Ansatz:

$$
\begin{equation*}
t(\theta, \psi, \phi)=f(\theta) \tag{69}
\end{equation*}
$$

Equation (30) then yields the ODE

$$
\begin{array}{r}
4 \cot (\theta) f^{\prime}(\theta) f^{\prime \prime}(\theta)-2\left(\csc ^{2}(\theta)+2\right) f^{\prime}(\theta)^{2}\left(f^{\prime}(\theta)^{2}-1\right)=0 \\
\Rightarrow f^{\prime}(\theta)= \pm \frac{\sqrt{\sin (2 \theta)} \cot (\theta)}{\sqrt{\mathrm{C}+\sin (2 \theta) \cot ^{2}(\theta)}} \tag{71}
\end{array}
$$

$$
\begin{gathered}
f^{\prime}(\theta)=+\frac{\sqrt{\sin (2 \theta)} \cot (\theta)}{\sqrt{\mathrm{C}+\sin (2 \theta) \cot ^{2}(\theta)}} \text { for } C \text { between }-1 \text { (blue) and } 1 \text { (red). } \mathrm{AdS}_{4} \\
\text { boundary is at } \theta=\pi / 2 .
\end{gathered}
$$

- $C=0 \Rightarrow f^{\prime}=1 \Rightarrow$ null boundary of the WDW patch.
- $C>0 \Rightarrow f^{\prime} \leq 1 \Rightarrow$ spacelike surface reaching to the boundary.
- $C<0 \Rightarrow f^{\prime} \geq 1 \Rightarrow$ Lemon like surface which turns around at finite $\theta_{\max } \leq \pi / 2$.

Differences and similarities to $d=3$:

- $K_{m n} \neq m_{m} m_{n} k$
- $f^{\prime}(0)=1$ for any C, hence induced metric $\left(\neq A d S_{3}\right)$ is degenerate at tip; curvature singularity in Kretschmann scalar.
- "Height" (time-span) of $\mathrm{AdS}_{d \geq 4}$ lemons depends on C (\sim turning point).

References

R. Arnowitt, S. Deser, and W. Misner. The dynamics of General Relativity. In L. Witten, editor, Gravitation: an introduction to current research, chapter 7, pages 227-265. Wiley, New York, 1962. doi: 10.1007/s10714-008-0661-1.
T. Barbot, F. Béguin, and A. Zeghib. Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes Application to the Minkowski problem in the Minkowski space. Annales de l'Institut Fourier, 61(2):511-591, 2011. doi: 10.5802/aif.2622. URL https://aif.centre-mersenne.org/articles/10.5802/aif.2622/.
J. Boruch, P. Caputa, D. Ge, and T. Takayanagi. Holographic path-integral optimization. JHEP, 07: 016, 2021a. doi: 10.1007/JHEP07(2021)016.
J. Boruch, P. Caputa, and T. Takayanagi. Path-Integral Optimization from Hartle-Hawking Wave Function. Phys. Rev. D, 103(4):046017, 2021b. doi: 10.1103/PhysRevD.103.046017.
H. A. Camargo, P. Caputa, and P. Nandy. Q-curvature and Path Integral Complexity. 12022.
P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi, and K. Watanabe. Anti-de Sitter Space from Optimization of Path Integrals in Conformal Field Theories. Phys. Rev. Lett., 119(7):071602, 2017 a. doi: 10.1103/PhysRevLett.119.071602.
P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi, and K. Watanabe. Liouville Action as Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT. JHEP, 11:097, 2017b. doi: 10.1007/JHEP11(2017)097.
P. Caputa, D. Das, and S. R. Das. Path integral complexity and Kasner singularities. JHEP, 01:150, 2022. doi: 10.1007/JHEP01(2022)150.
N. Chagnet, S. Chapman, J. de Boer, and C. Zukowski. Complexity for Conformal Field Theories in General Dimensions. Phys. Rev. Lett., 128(5):051601, 2022. doi: 10.1103/PhysRevLett.128.051601.
A. R. Chandra, J. de Boer, M. Flory, M. P. Heller, S. Hoertner, and A. Rolph. Spacetime as a quantum circuit. JHEP, 04:207, 2021. doi: 10.1007/JHEP04(2021)207.
A. R. Chandra, J. de Boer, M. Flory, M. P. Heller, S. Hörtner, and A. Rolph. Cost of holographic path integrals. SciPost Phys., 14:061, 2023. doi: 10.21468/SciPostPhys.14.4.061.
B. Czech, L. Lamprou, S. McCandlish, and J. Sully. Integral Geometry and Holography. JHEP, 10: 175,2015 . doi: $10.1007 / J H E P 10(2015) 175$.
B. Czech, L. Lamprou, S. McCandlish, B. Mosk, and J. Sully. A Stereoscopic Look into the Bulk. JHEP, 07:129, 2016. doi: 10.1007/JHEP07(2016)129.
B. Czech, Y. D. Olivas, and Z.-z. Wang. Holographic integral geometry with time dependence. JHEP, 12:063, 2020. doi: 10.1007/JHEP12(2020)063.
G. Darboux. Leçons sur la theorie générale des surfaces et les applications géométriques du calcul infinitésimal: les congruences et les équations lineaires aux dérivées partielles, des lignes tracées sur les surfaces. Number 2 in Cours de géométrie de la Faculté des Sciences. Gauthier Villars, 1889. URL https://books.google.es/books?id=dzteAAAAcAAJ.
P. Fonda, V. Jejjala, and A. Veliz-Osorio. On the Shape of Things: From holography to elastica. Annals Phys., 385:358-398, 2017. doi: 10.1016/j.aop.2017.08.011.
J. Hartle and R. Sorkin. Boundary Terms in the Action for the Regge Calculus. Gen. Rel. Grav., 13: 541-549, 1981. doi: 10.1007/BF00757240.
G. Hayward. Gravitational action for space-times with nonsmooth boundaries. Phys. Rev. D, 47: 3275-3280, 1993. doi: 10.1103/PhysRevD.47.3275.
G. Helzer. A relativistic version of the Gauss-Bonnet formula. Journal of Differential Geometry, 9(4):507 $-512,1974$. doi: $10.4310 / \mathrm{jdg} / 1214432546$. URL https://doi.org/10.4310/jdg/1214432546.
S. Krivoshapko and V. Ivanov. Encyclopedia of Analytical Surfaces. Springer International Publishing, 2015. ISBN 9783319117737. URL https://books.google.de/books?id=cXTdBgAAQBAJ.
E. Poisson. A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press, 2004. ISBN 9781139451994 . URL https://books.google.es/books?id=bk2XEgz_ML4C.
S. Ryu and T. Takayanagi. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett., 96:181602, 2006. doi: 10.1103/PhysRevLett.96.181602.
M. Troyanov. Prescribing curvature on compact surfaces with conical singularities. Transactions of the American Mathematical Society, 324(2):793-821, 1991. ISSN 00029947. URL http://www.jstor.org/stable/2001742.

