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Introduction
I One important approach to complexity is path integral optimization[Caputa et al.

2017a
][Caputa et al.

2017b

]
.

I Further progress came in
[Boruch et al.

2021b
]
:

I Idea: Compute action between boundary cutoff and bulk surface
Q, extremise w.r.t. scale factor of metric of Q.

I Add tension term T to action on Q → plays role of emergent time.
I This provides finite cutoff corrections to Liouville approach

beyond ∂φ� eφ.
I Further work in

[Boruch et al.
2021a

][Caputa et al.
2022

][Camargo et al.
2022

]
.

I Around the same time, we were considering a similar setup, leading up
to
[Chandra et al.

2021
]
.
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Basic idea
I Consider a subregion M of Euclidean Poincaré AdS3.
I Introduce two time-slices t = ti/f corresponding to the ground states
|0〉zi/f at different values of the radial cutoff.

I The radial boundary is at finite cutoff, z = ρ(t).
I Proposal: Complexity of the circuit that maps between |0〉zi/f is given

by the gravitational action on M .
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A first example
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Simple example - setup

We consider Euclidean AdS, with the curvature scale lAdS = 1:

ds2 = dz2 + dt2 + dx2

z2 . (1)

Bulk action:

I = 1
κ

∫
M

d3x
√
G (R+ 2) + 2

κ

∫
∂M

d2x
√
gK + Ic. (2)

I M is the bulk region bounded by ρ(t) ≤ z ≤ ∞ and ti ≤ t ≤ tf

I Bulk term

I Surface terms

I Joint terms Ic = 2
κ

∫
dx
√
j α

[Hartle and Sorkin
1981

][Hayward
1993

]
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Simple example - boundary surface

We investigate the bulk region M
bounded by ρ(t) ≤ z ≤ ∞ and ti ≤ t ≤ tf .

The induced line element on the boundary surface is

ds2 = (1 + ρ̇2)dt2 + dx2

ρ2 , (3)

hence

R = 2(ρρ̈− ρ̇2(1 + ρ̇2))
(1 + ρ̇2)2 , (4)

K = ρρ̈+ 2(1 + ρ̇2)
(1 + ρ̇2)3/2 . (5)
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Simple example - action
We obtain

I = −4
κ

∫
M

d2x

∫ ∞
z=ρ

dz

z3 + 2
κ

∫
∂M

d2x
ρρ̈+ 2(1 + ρ̇2)
ρ2(1 + ρ̇2) + Ic[ρ]

= 2Vx
κ

∫ tf

ti

dt
ρρ̈+ (1 + ρ̇2)
ρ2(1 + ρ̇2) + Ic[ρ] (6)

for the on-shell bulk action (Vx =
∫
dx). For the corner term, we also find

Ic = 2Vx
κ

(
π/2− arctan ρ̇(tf )

zf
+ π/2 + arctan ρ̇(ti)

zi

)
. (7)

Integrating by parts, this action can be written only using first derivatives
of ρ, yielding

I =2Vx
κ

∫ tf

ti

dt

(
1
ρ2 + ρ̇ arctan ρ̇

ρ2

)
+ πVx

κ

(
1
zf

+ 1
zi

)
. (8)
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Simple example - action
We obtain

I = −4
κ

∫
M

d2x

∫ ∞
z=ρ

dz

z3 + 2
κ

∫
∂M

d2x
ρρ̈+ 2(1 + ρ̇2)
ρ2(1 + ρ̇2) + Ic[ρ]

= 2Vx
κ

∫ tf

ti

dt
ρρ̈+ (1 + ρ̇2)
ρ2(1 + ρ̇2) + Ic[ρ] (6)

for the on-shell bulk action (Vx =
∫
dx). For the corner term, we also find

Ic = 2Vx
κ

(
π/2− arctan ρ̇(tf )

zf
+ π/2 + arctan ρ̇(ti)

zi

)
. (7)

Integrating by parts, this action can be written only using first derivatives
of ρ, yielding

I =2Vx
κ

∫ tf

ti

dt

(
1
ρ2 + ρ̇ arctan ρ̇

ρ2

)
+
��

���
��XXXXXXX

πVx
κ

(
1
zf

+ 1
zi

)
. (8)
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Simple example - eoms

The equations of motion obtained by extremizing (8) read

ρρ̈+ (1 + ρ̇2)
ρ3(1 + ρ̇2)2 = 0. (9)

The generic solution to (30) reads

ρ(t) =
√

R2 − (t− t0)2 (10)

and describes semi-circular arcs of radius R. The equal time slice ρ̇→∞
corresponds to the limit of infinite radius.
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Simple example - on-shell action

With boundary being ρ(tf ) = zf and ρ(ti) = zi, the value of the Euclidean
action in the first term of (8) is

I = 2Vx
κ

(
1
zf

arctan
z2
i − z2

f + ∆t2

2zf∆t − 1
zi

arctan
z2
i − z2

f −∆t2

2zi∆t

)
. (11)

Now extremising w.r.t. ∆t (keeping zi 6= zf fixed) gives ∆t = 0, i.e.
R→∞, and

Imin = cπVx
24

(
1
zf
− 1
zi

)
. (12)

→ We recover the complexity=volume proposal?!
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Simple example - comparison to Liouville

For ρ̇� 1,

I = 2Vx
κ

∫ tf

ti

dt

(
1
ρ2 + ρ̇ arctan ρ̇

ρ2

)
≈ 2Vx

κ

∫
dt

(
1
ρ2 + ρ̇2

ρ2

)
, (13)

which, assuming no x-dependence, is equivalent to the Liouville Lagrangian

SL = c

24π

∫
dt

∫
dx
(
η e2ω + (∂tω)2 + (∂xω)2) . (14)

after a change of variables ρ(t)→ (1/√η) e−ω(t). The equations of motion
derived from (13) take the form

ρρ̈+ (1− ρ̇2)
ρ3 = 0. (15)
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Comparison to Boruch et al.

Note that
[Boruch et al.

2021b
]
investigates a setup similar to us, and up to

notation (6) also appears in the appendix of that paper. Following[Boruch et al.
2021b

]
, we introduce a conformal time u, with

du =
√

1 + ρ̇(t)2dt, (16)

such that the line element (3) is transformed into the conformal gauge form

ds2 = du2 + dx2

%(u)2 . (17)

with the new %(u(t)) = ρ(t). The action now reads
[Boruch et al.

2021b
]

I = 2Vx
κ

∫ uf [%]

ui[%]
du

(√
1− %′2 + %′ arcsin %′

%2

)
. (18)
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Comparison to Boruch et al.

From this,
[Boruch et al.

2021b
]
obtains eoms

%%′′ + 2(1− %′2)
%3(1− %′2)2 = 0, (19)

which are inequivalent to our eoms, which in terms of % and u take the
Liouville form:

%%′′ + (1− %′2)
%3 = 0. (20)

Problem: Integral
∫ uf [%]
ui[%] du has ρ-dependent boundary conditions!

→
[Boruch et al.

2021b
]
and

[Chandra et al.
2021

]
study different variational problems!
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Kinematic space
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Kinematic space approach

Let us analyse the same problem from a kinematic space
[Czech et al.

2015
]
point

of view:

At each point
(z = ρ(t), t, 0), there is a
geodesic (with endpoints
at (t1(t), t2(t))) tangent to
the cutoff surface. We
find:

t1,2(t) = (21)

t+ ρρ̇± ρ
√
ρ̇2 + 1.
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Kinematic space approach
Kinematic space (for x = const. slice):

ds2
ks = −dt1 dt2

(t1 − t2)2 . (22)

Consider now the action

Sks ∼
∫

dx

ρ
dsks(t), (23)

with the coordinate x in units of the cutoff ρ. This results in

Sks ∼
∫
dtdx

∣∣∣∣∣ ρρ̈+ (1 + ρ̇2)
ρ2(1 + ρ̇2)

∣∣∣∣∣ , (24)

which agrees with the bulk action in the form (6) as long as ρρ̈ ≥ −(1 + ρ̇2)
(path in kinematic space is timelike!).

For the solutions of (30), (24) vanishes identically!
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Generic flow equations
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Generic Flow Equations

We use the ADM formalism
[Arnowitt et al.

1962
]
to write the metric as

ds2 = N2dr2 + gmn(x, r)(dxm +Nmdr)(dxn +Nndr) (25)

and the Lagrangian in terms of canonical variables

L = √g (πmn∂rgmn −NH −NmHm) , (26)

πmn = −(Kmn −Kgmn) (27)

where the lapse and shift functions appear as Lagrange multipliers enforcing

H = Hm = 0. (28)
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Generic Flow Equations

To describe the flow we imagine starting with a surface at constant r and
moving the cutoff slightly so that r → r + ε(x). Then

δεS = 2
∫
√
gε(x)

(
KmnKmn −K2) , (29)

We hence obtain the flow equations

Kn
mK

m
n −K2 = 0. (30)
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What does Kn
mKm

n − K2 = 0 mean?
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Equation of Motion

Our considerations in
[Chandra et al.

2021
][Chandra et al.

2023
]
led us to study

co-dimension one surfaces Q embedded into AdS according to the equation

Kn
mK

m
n −K2 = 0. (30)

Notation
[Poisson

2004
]
:

I m,n, ...: indices for surface coordinates ym; µ, ν, ...: indices for ambient
space coordinates xµ.

I eαa = ∂xα/∂ya: projectors to surface tangent space; nα: normal vector

I gmn: induced metric; Gµν : bulk metric.

I Kmn: extrinsic curvature tensor of the surface; K = Kn
n .

I R: ambient space (bulk) curvature; R: induced curvature etc.
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Equation of Motion

Our considerations in
[Chandra et al.

2021
][Chandra et al.

2023
]
led us to study

co-dimension one surfaces Q embedded into AdS according to the equation

Kn
mK

m
n −K2 = 0. (30)

Brute force ansatz:

I Define embedding z = f(t, x).

I Calculate Kij [f, f ′, f ′′, ḟ , ...].

I Solve (30) as nonlinear PDE for f

I Problem is only tractable in particularly simple/symmetric setups.
See

[Chandra et al.
2021

]
.
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Equation of Motion

Our considerations in
[Chandra et al.

2021
][Chandra et al.

2023
]
led us to study

co-dimension one surfaces Q embedded into AdS according to the equation

Kn
mK

m
n −K2 = 0. (30)

Motivation 1:

I Is there a more elegant approach?

I E.g., (30) is matrix equation for Kn
m.

I Given a solution Kn
m, can we find corresponding embedding?

I Similar approach in
[Fonda et al.

2017
]
to holo. EE. in higher curvature

theories.
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Equation of Motion

Our considerations in
[Chandra et al.

2021
][Chandra et al.

2023
]
led us to study

co-dimension one surfaces Q embedded into AdS according to the equation

Kn
mK

m
n −K2 = 0. (30)

Motivation 2:
In vacuum, due to the Hamiltonian constraint

0 ≡ H = R− 2Λ−
(
Kn
mK

m
n −K2) , (31)

equation (30) demands that the Ricci curvature R of the induced metric of
the surface is constant. Specifically, for d = 3 and AdS-radius Λ = −1, then
R = −6 and R = −2 → looking for constant curvature surfaces.
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Darboux’s observation

As pointed out in
[Barbot et al.

2011
]
, the French mathematician Darboux once

remarked that:

It can be said that the total curvature has
more importance in Geometry; as it de-
pends only on the line element, it comes
into play in all questions concerning the
deformation of surfaces. In mathematical
physics, on the contrary, it is the mean
curvature [i.e. extrinsic curvature] which
seems to play the dominant role

[Darboux
1889

]
. Jean-Gaston Darboux

1842 – 1917
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Darboux’s observation

More than 130 years later, Darboux’s observation still seems to hold true,
at least in AdS/CFT!

I The Ryu-Takayanagi formula[Ryu and Takayanagi
2006

]
demonstrates the role of

surfaces with constant (vanishing) extrinsic
curvature in the holographic dictionary.

I "Darboux’s question" in AdS/CFT:
Do surfaces of constant intrinsic curvature
have a role in AdS/CFT, and if yes, which
one?

Jean-Gaston Darboux
1842 – 1917
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Solving the equations of motion

Equations of motion:

Kn
mK

m
n −K2 = 0 (30)

⇔

R = 2Λ (in vacuum) (32)

⇔

detKmn = 0 (in dinduced = 2) (33)

Ansatz:

Kmn ≡ mmmnk (34)

(generic in dinduced = 2, subset of solutions in dinduced > 2)
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Solving the equations of motion

Codazzi equations
[Poisson

2004
]
:

Rαβγδeαaeβb e
γ
c e
δ
d = Rabcd ± (KadKbc −KacKbd) (35)

Rµβγδnµeβb e
γ
c e
δ
d = Kbc|d −Kbd|c (36)(

Rαβ −
1
2RGαβ

)
nβeαa = Kb

a|b −K,a (37)

(R ∼ ambient; R ∼ induced geometry; eαa ∼ projectors; nβ ∼ normal)
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Solving the equations of motion

Codazzi equations
[Poisson

2004
]
, using ansatz Kmn ≡ mmmnk:

Rαβγδeαaeβb e
γ
c e
δ
d = Rabcd ± (KadKbc −KacKbd) (35)

⇒ Rαβγδeαaeβb e
γ
c e
δ
d = Rabcd ± 0 (38)

(R ∼ ambient; R ∼ induced geometry; eαa ∼ projectors; nβ ∼ normal)

Hence if the ambient space is (locally) maximally symmetric

Rαβγδ = R
d(d− 1) (GαγGβδ −GαδGβγ) , (39)

then so is the induced metric of the surface with R = d−2
d
R.
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Solving the equations of motion

Furthermore, Gαβnβeαa = 0 (ambient space is locally AdS), and (setting
k = ±1, mn unnormalised) we find:

Rµβγδnµeβb e
γ
c e
δ
d = Kbc|d −Kbd|c (36)

⇒ 0 = mc∇dmb +mb∇dmc −md∇cmb −mb∇cmd. (40)

Now, set d = 3 and introduce lama = 0, lala = const. Thus:

0 = mdl
clb∇cmb ⇒ 0 = lclb∇cmb. (41)

lbmb = 0⇒ 0 = lc∇c(lbmb) = (lc∇clb) mb + lclb∇cmb︸ ︷︷ ︸
=0

. (42)

Also, (lc∇clb) lb ∝ lc∇clblb = 0 and hence lc∇clb = 0 – geodesic
equation.
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Solving the equations of motion
Recall:

lama = 0⇒ Kabl
alb = 0 (43)

The relation between the covariant derivative in the ambient space X;β and
the covariant derivative in the induced metric X|b gives

[Poisson
2004

]
lα;βe

β
b = la|be

α
a ± laKabn

α. (44)

Contracting (44) with lb, we find

lβlα;β︸︷︷︸
ambient space geodesic eq.

= lbla|b︸︷︷︸
induced metric geodesic eq.

eαa ± lblaKabn
α. (45)

The surface is foliated by curves which are geodesics in the ambient
space.
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Solving the equations of motion

The surface with R = −2 is foliated by
curves which are geodesics in the ambient
space (with R = −6).

Analogue statement in R3:
All developable surfaces (i.e. R = 0) are
ruled surfaces (i.e. foliated by straight
lines)

[Krivoshapko and Ivanov
2015

]
, however the

converse is not true.
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Example 1: Euclidean AdS3, Poincaré-patch
Background:

ds2 = 1
z2

(
dt2 + dx2 + dz2) (46)

Solution for strip of varying width:

z(t, x) =
√
r(t)2 − x2, (47)

Genralizes case of constant width studied in
[Chandra et al.

2021
]
.
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Example 2: Uniqueness?
Background:

ds2 = 1
z2

(
dt2 + dx2 + dz2) (48)

For elliptic boundary region, there are two hypersurfaces satisfying (30)
with the same boundary condition at z = 0. For one we find K < 0
everywhere, while for the other one we find K > 0 everywhere.
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Example 3: Lorentzian (global) AdS3, specelike surfaces
Background:

ds2 = 1
cos(θ)2

(
−dt2 + dθ2 + sin(θ)2dφ2) , (49)

Solution:

t(φ, θ) = tbdy

[
arctan

(√
csc2(θ) sec2(φ)− 1

)]
(50)

where tbdy[φ] is the boundary condition at the asymptotic boundary
θ = π/2 which we assume to be symmetric under φ→ −φ.
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Example 4: "Lemons"

Let’s now search for timelike surfaces in Lorentzian AdS.

Timelike oscillating geodesic:

t(θ) = ± arctan

(
E sin(θ)√

−1 + E2 cos(θ)2

)
, φ = const. (51)

where the "energy" E > 1 of the geodesic is related to its turning point
θmax by θmax = arccos 1/E. we can construct surfaces of the form

t(θ, φ) = ± arctan

(
E(φ) sin(θ)√

−1 + E(φ)2 cos(θ)2

)
+ const. (52)

where we have promoted E to a φ-dependent parameter.
K diverges at θ = 0 where the surfaces will have a conical singularity.
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From top-left to bottom-right: E(φ) =
√

2, E(φ) = 2 sin(2φ) + cos(4φ) + 5, E(φ) = 5 sin2
(
φ
4

)
+
√

2,

E(φ) = tan4
(
φ
2

)
+
√

2, E → ∞, and

E(φ) =
(

cos(φ)
sin(φ)

)2
+ 2 for 0 < φ < π, E(φ) = −i

((
cos(φ)
sin(φ)

)2
+ 2

)
for π < φ < 2π.
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Lemons, Observations:
I All lemons have "height" ∆t = π.

I Action inside finite Lemons is
IEH + IGHY = 4π2, independent of E by
construction: These surfaces bound regions
of the bulk whose action does not change
under infinitesimal deformations of their
boundary.

I Imaginary values of E(φ) lead to spacelike
surfaces that reach the boundary.

I t(θ, φ) = θ, for E →∞; surface becomes
null boundary of WDW patch.
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Lemons, Questions/Speculations:
I All lemons have "height" ∆t = π.
→ Is there a specific T T̄ deformation that
describes a theory living on this surface?

I Action inside finite Lemons is
IEH + IGHY = 4π2, independent of E.

I Imaginary values of E(φ) lead to spacelike
surfaces that reach the boundary.
→ Complexify coordinates?

I t(θ, φ) = θ, for E →∞; surface becomes
null boundary of WDW patch.
→ Value of action in this limit?
→ E � 1 as regularisation of WdW-patch?
→ WdW patch arises naturally, without
"infinite tension" limit of

[Boruch et al.
2021a

]
.

42 / 46



Kinematic space connection?
The solutions to the flow equation

Kn
mK

m
n −K2 = 0. (30)

are foliated by geodesics of the ambient
space.

That means: these surfaces are described
by curves in the space of geodesics
(∼kinematic space

[Czech et al.
2015

]
,

generalised in[Czech et al.
2016

][Czech et al.
2020

][Chagnet et al.
2022

]
).

⇒ Can we phrase our results from
a kinematic space perspective?
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Summary and outlook

I Groundwork laid in
[Caputa et al.

2017a
][Caputa et al.

2017b

][Boruch et al.
2021b

]
with path

integral optimization.

I In simple Euclidean case, extremising action under a dynamic cutoff
surface reproduces equal time slice/CV proposal

[Chandra et al.
2021

]
.

I Generalisation to Lorentzian case is non-trivial, with many challenges
(e.g. boundedness of action)

[Chandra et al.
2023

]
.

I Universal flow equation derived in
[Chandra et al.

2021
]
can be solved quite

generally → suggests konnection to kinematic space.

I See also next talk by Andrew! :
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Gauss-Bonnet theorem
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Implications of the Gauss-Bonnet theorem

Consider the Gauss-Bonnet theorem
[Troyanov

1991
]

∫
Q

R

2 dV +
∫
∂Q

kgds+
∑

corners c

αc +
∑

conical sing. s

βs = 2πχ, (53)

As we are searching for 2d surfaces of constant scalar curvature, we find∫
Q

R

2 dV = R

2 V < 0 (54)

So for χ ≥ 0 (includes all Lorentzian cases), surface either needs to reach
boundary or have conical singularities!
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Conical singularities in the Gauss-Bonnet formula

In order to derive the contribution of conical singularities, we start with∫
Q

R

2 dV +
∫
∂Q

kgds+
∑

(old) corners c

αc +Xconical sing. = 2πχ. (55)

We resolve the singularity by introducing a cut:∫
Q

R

2 dV +
∫
∂Q

kgds+
∑

(old) corners c

αc +
∑

new corners c

αc = 2π(χ− 1). (56)

Comparing (55) and (56), we find

Xconical sing. =
∑

new corners c

αc + 2π = αc1 + αc2 + 2π = δ. (57)

with αc1 = −π. αc2 = −(π − δ), and deficit angle δ.
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Left: Introducing a cut to derive contribution from conical singularities in
Euclidean case.

Right: Lorentzian deficit angle for lemon surface.
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Lorentzian case
For the Lorentzian Gauss-Bonnet theorem, see e.g.

[Helzer
1974

]
. One has to

define the (always real valued) oriented Lorentzian angle δ between two
future pointing normalised timelike vectors X and Y to satisfy

cosh(δ) = −X · Y. (58)

The Lorentzian Gauss-Bonnet-theorem then takes the form∫
Q

R

2 dV +
∫
∂Q

kgds+
∑

corners c

αc +
∑

conical sing. s

βs = 0, (59)

Firstly, the right hand side automatically vanishes (χ ≡ 0), secondly,
traversing a closed timelike geodesic polygon in flat space yields the total
Lorentzian angle

α12 + α23 + ...+ αn1 = 0. (60)
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Application to Lemons

Assume E indep. of φ. Induced metric:

ds2 = 1
cos(θ2)2

(
−dt22 + dθ2

2
)
, (61)

with

4arctanh
(

tan
(
θmax,2

2

))
= 2π tan(θmax,3). (62)

Hence:

RV

2 = −4π tan(θmax,3) = −4π
√
E2 − 1. (63)
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Application to Lemons
RV

2 = −4π tan(θmax,3) = −4π
√
E2 − 1. (63)

Tangent vectors of boundary geodesics:

Xm
± =

(
Xt2
±

Xθ2
±

)
=

(
E2

±
√
E2

2 − 1

)
(64)

Hence:

δfuture conical sing. = arccosh (−X+ ·X−) = 2π tan(θmax,3) (65)

= δpast conical sing. (66)

Gaus-Bonnet theorem

RV

2 + δpast conical sing. + δfuture conical sing. = 0. (67)

is satisfied.
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Lemons in higher dimensions
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"Lemons" in higher dimensions

Let’s consider global Lorentzian AdS4,

ds2 = 1
cos(θ)2

(
−dt2 + dθ2 + sin(θ)2dψ2 + sin(θ)2 sin(ψ)2dφ2) , (68)

(boundary at θ = π/2) and assume rotational symmetry. Ansatz:

t(θ, ψ, φ) = f(θ). (69)

Equation (30) then yields the ODE

4 cot(θ)f ′(θ)f ′′(θ)− 2
(
csc2(θ) + 2

)
f ′(θ)2 (f ′(θ)2 − 1

)
= 0, (70)

⇒ f ′(θ) = ±
√

sin(2θ) cot(θ)√
C + sin(2θ) cot2(θ)

(71)
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0.5 1.0 1.5
θ

0.5

1.0

1.5

2.0
f'

f ′(θ) = +
√

sin(2θ) cot(θ)√
C+sin(2θ) cot2(θ)

for C between −1 (blue) and 1 (red). AdS4

boundary is at θ = π/2.

I C = 0⇒ f ′ = 1⇒ null boundary of the WDW patch.
I C > 0⇒ f ′ ≤ 1⇒ spacelike surface reaching to the boundary.
I C < 0⇒ f ′ ≥ 1⇒ Lemon like surface which turns around at finite
θmax ≤ π/2.
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0.5 1.0 1.5
θ

0.5

1.0

1.5

2.0
f'

f ′(θ) = +
√

sin(2θ) cot(θ)√
C+sin(2θ) cot2(θ)

for C between −1 (blue) and 1 (red). AdS4

boundary is at θ = π/2.

Differences and similarities to d = 3 :
I Kmn 6= mmmnk

I f ′(0) = 1 for any C, hence induced metric ( 6= AdS3) is degenerate at
tip; curvature singularity in Kretschmann scalar.

I "Height" (time-span) of AdSd≥4 lemons depends on C (∼ turning
point).
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