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Introduction

» One important approach to complexity is path integral optimization

Caputa et al.] [Caputa et al.]
2017a 2017b .

g Boruch et al.
» Further progress came in Lw;llllf)' et a }:

» Idea: Compute action between boundary cutoff and bulk surface
Q, extremise w.r.t. scale factor of metric of Q.

» Add tension term T to action on @ — plays role of emergent time.

» This provides finite cutoff corrections to Liouville approach
beyond 0¢ < e?.

: B h et al. (OF ta et al. Camargo et al.
» Further WOI'k in |:2)(4)3i14(‘1(1 ) }L“g;u L ) :||:2UI‘_13H;U( ) }

» Around the same time, we were considering a similar setup, leading up

to {Eilys\lmll(\ et :\]} .
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Basic idea

» Consider a subregion M of Euclidean Poincaré AdSs.

» Introduce two time-slices t = ¢;, corresponding to the ground states

|0)=,,, at different values of the radial cutoff.
» The radial boundary is at finite cutoff, z = p(t).

» Proposal: Complexity of the circuit that maps between |0)., /¢ 1s given

by the gravitational action on M.

A
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A first example
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Simple example - setup

We consider Euclidean AdS, with the curvature scale [445 = 1:

45 — dz* + dt* + dz?
ST 2
Bulk action:

1:1/ d3x\/§(7€+2)+%/ &z JGK + I.. )

k oM

» M is the bulk region bounded by p(t) < z < oo and t; <t <ty
» Bulk term
» Surface terms

. s Hartle and Sorkin] [Hayward]
» Joint terms I. = %fd:c\/joz [15,‘11 wnd \”““} Looa
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Simple example - boundary surface

t

ts 0)=,
We investigate the bulk region M o
bounded by p(t) < z < oo and ¢; <t < ty. Wi
t; [0+,
= z
2y Zi
The induced line element on the boundary surface is
1+ p?)dt® + da?
ds2:—( +p)2+x’ 3)
p
hence
TRV
P+ 2(1 + p°)
K="——__-- 5
0+ )
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Simple example - action

We obtain

- “dz 2 p+2(1+ p?
JZJ/ dQI/ §+,/ P 200
kI 2=p ? K Jonm P21+ p?)

LT [y e
t

for the on-shell bulk action (V = [ dx). For the corner term, we also find

I — 2V (71'/2 — arctan p(ty) n /2 + arctanp(ti)) . e
K zf 2

Integrating by parts, this action can be written only using first derivatives

of p, yielding

2V, [ 1 parctanp Ve (1 1
z:ﬁ/ at (pwpﬂ) ﬂ(ﬁz_). ®)
t; f 1

i
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Simple example - action

We obtain

- “dz 2 p+2(1+ p?
JZJ/ dQI/ §+,/ P 200
kI 2=p ? K Jonm P21+ p?)

_2Ve (Y pp+ (1447
&, p?(1+p?)

+ Lelp] (6)

for the on-shell bulk action (V = [ dx). For the corner term, we also find

I — 2V <71'/2 — arctan p(ty) n /2 + arctanp(ti)) . e
K zf 2

Integrating by parts, this action can be written only using first derivatives

of p, yielding

2v, [V 1  parctanp 1
I= / dt (2 t— +— . (8)
t

K P P

i
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Simple example - eoms

The equations of motion obtained by extremizing (8) read

pi+ (1+p%)
——= =0. 9
= g
The generic solution to (30) reads
p(t) = /2 — (t —to)? (10)

and describes semi-circular arcs of radius fR. The equal time slice p — oo

corresponds to the limit of infinite radius.
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Simple example - on-shell action

With boundary being p(tf) = zy and p(t;) = z;, the value of the Euclidean

action in the first term of (8) is

2V, (1 22—+ AP 1 22— 22 — A2
I= —arctan ——F =" _ —arctan ——L _—" ) (11)
K zZf 2z5 At 2 22; A\t

Now extremising w.r.t. At (keeping z; # zy fixed) gives At =0, i.e.

R — oo, and

eV 1 1
e — — = — . 12
24 (Zf z,> ( )

— We recover the complexity=volume proposal?!
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Simple example - comparison to Liouville

For p < 1,

2V, [ 1 parctanp 2V, 1 2
I:—/ dt <2+2 ~== [d (S5+5) , (13
& S, p p K P’ op

i

which, assuming no z-dependence, is equivalent to the Liouville Lagrangian
— c 2w 2 2
Sp = e /dt/dm (ne + (Ow)” + (Ozw) ) . (14)

after a change of variables p(t) — (1/\/7) e~“® The equations of motion
derived from (13) take the form

pp+ (1= p°)

p =0. (15)
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Comparison to Boruch et al.

Note that L) el el ’”'J investigates a setup similar to us, and up to
notation (6) also appears in the appendix of that paper. Following
{ Ay et el } we introduce a conformal time wu, with

du = /1 + p(t)2dt, (16)

such that the line element (3) is transformed into the conformal gauge form

du® + dz?
ds? = Lf (17)
o(u)
with the new Q(u(t)) = p( ) The action now reads {)[) i;\]v]x et (\ll
2v, [ V/1— 02+ ¢ arcsin ¢/
I=— du . (18)
B Juilel 0
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Comparison to Boruch et al.

From this, Pﬁ,}‘{j}‘{,’h ctall obtains eoms

00" +2(1—0"”)

A1 — 0'2)2 =0, (19)

which are inequivalent to our eoms, which in terms of ¢ and u take the

Liouville form:

00" 4+ (1—¢'?)

o =0. (20)

Problem: Integral f;ﬁ]gl du has p-dependent boundary conditions!

Boruch et al.

— [_)[,3”, } and [EL!-’;‘]'"““ “ ”J'} study different variational problems!
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Kinematic space
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Kinematic space approach

Let us analyse the same problem from a kinematic space L

of view:

At each point

(z = p(t),t,0), there is a
geodesic (with endpoints
at (t1(t),t2(t))) tangent to
the cutoff surface. We
find:

t1,2(t) = (21)

t+pptp\/p?+ L.

t;
t1(t)

Czech et al
2015

point
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Kinematic space approach

Kinematic space (for z = const. slice):

—dt dtz
dspy = ———=. 22
k (tl — t2)2 ( )
Consider now the action
Sks ~ / dﬁdsks(t)7 (23)
p
with the coordinate x in units of the cutoff p. This results in
pp+ (1 +p°)
Sks ~ | dtdx | —————7—= |, 24
’ / p?(1+4?) -

which agrees with the bulk action in the form (6) as long as pp > —(1 + p?)

(path in kinematic space is timelike!).

For the solutions of (30), (24) vanishes identically!
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Generic flow equations
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Generic Flow Equations

We use the ADM formalism ‘ ‘\“,(‘,‘}"'\"" ctal. ‘ to write the metric as
ds® = N?dr® + gpn(z,7)(dz™ + N™dr)(dz"™ + N"dr) (25)
and the Lagrangian in terms of canonical variables

L= \/a(ﬂmnargmn —NH — NmHm) ) (26)

Tmn = _(Kmn - Kgmn) (27)

where the lapse and shift functions appear as Lagrange multipliers enforcing

H=H"=0. (28)

21 /46



Generic Flow Equations

To describe the flow we imagine starting with a surface at constant r and

moving the cutoff slightly so that » — r + e(x). Then

5.5 =2 / Vael(@) (K™ K — K2, (29)

We hence obtain the flow equations

KrK™ - K?=0. (30)

22 /46



What does K" K™ — K? = (0 mean?
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Equation of Motion

Our considerations in led us to study

co-dimension one surfaces ) embedded into AdS according to the equation

KMLKT — K2 =0. (30)

Notation

» m,n,...: indices for surface coordinates y™; u, v, ...: indices for ambient

space coordinates x*.
> eq = 0z%/0y*: projectors to surface tangent space; n“: normal vector
» gmn: induced metric; G.: bulk metric.
» Kon: extrinsic curvature tensor of the surface; K = K.

» R: ambient space (bulk) curvature; R: induced curvature etc.
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Equation of Motion

Our considerations in led us to study

co-dimension one surfaces @Q embedded into AdS according to the equation

KrK™ - K?=0. (30)

Brute force ansatz:
» Define embedding z = f(t, ).
» Calculate Ki[f, /. f", f,...].
» Solve (30) as nonlinear PDE for f

» Problem is only tractable in particularly simple/symmetric setups.

See
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Equation of Motion

Our considerations in led us to study

co-dimension one surfaces Q embedded into AdS according to the equation

KL K" — K*=0. (30)

Motivation 1:
» Is there a more elegant approach?
» E.g., (30) is matrix equation for K.
» Given a solution K7, can we find corresponding embedding?

» Similar approach in to holo. EE. in higher curvature

theories.
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Equation of Motion

Chandra et a Chandra et al

Our considerations in L‘.“ ‘ ]} L”—" } led us to study

co-dimension one surfaces Q embedded into AdS according to the equation

K} K" — K*=0. (30)

Motivation 2:

In vacuum, due to the Hamiltonian constraint
0=H=R-2A— (KK — K?), (31)

equation (30) demands that the Ricci curvature R of the induced metric of
the surface is constant. Specifically, for d = 3 and AdS-radius A = —1, then

R = —6 and R = —2 — looking for constant curvature surfaces.
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Darboux’s observation

As pointed out in [53"1"?0“ o "1'}

remarked that:

It can be said that the total curvature has
more importance in Geometry; as it de-
pends only on the line element, it comes
into play in all questions concerning the
deformation of surfaces. In mathematical
physics, on the contrary, it is the mean
curvature [i.e. extrinsic curvature] which

seems to play the dominant role [R;ggm‘ﬂ,

, the French mathematician Darboux once

Jean-Gaston Darboux
1842 — 1917
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Darboux’s observation

More than 130 years later, Darboux’s observation still seems to hold true,
at least in AdS/CFT!

» The Ryu-Takayanagi formula
@85;““‘1 vl'“k”y“““gi} demonstrates the role of
surfaces with constant (vanishing) extrinsic

curvature in the holographic dictionary.

» "Darbouz’s question” in AdS/CFT:
Do surfaces of constant intrinsic curvature
have a role in AdS/CFT, and if yes, which

one?

Jean-Gaston Darboux
1842 — 1917
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Solving the equations of motion

Equations of motion:

K'K™ - K*=0 (30)
=
R = 2A (in vacuum) (32)
=4
det Kmn =0 (ln dinduced = 2) (33)
Ansatz:
Kpn = mpmmnk (34)

(generic in dinduced = 2, subset of solutions in dinduced > 2)
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Solving the equations of motion

Codazzi equations

Raﬁ’yéegefezeg = Rabed = (Kadec - KaeKbd) (35)

Rupysntepeles = Kyeja — Kpaje (36)
1 a
(Raﬁ - inaag) nPed = KYy — K.q (37)
(R ~ ambient; R ~ induced geometry; eg ~ projectors; n? ~ normal)
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Solving the equations of motion

Codazzi equations “’[‘,’[{]T““], using ansatz K, = mmmyk:
Raﬂ’ydegefezeg = Rabcd + (Kadec - Kachd) (35)
= Rapgyseaeleled = Rapea = 0 (38)
(R ~ ambient; R ~ induced geometry; eg ~ projectors; n? ~ normal)

Hence if the ambient space is (locally) maximally symmetric

Rapys = (GarGps — GasGpy) , (39)

R
d(d—1)

then so is the induced metric of the surface with R = d—fR.
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Solving the equations of motion

Furthermore, Gosn”ed = 0 (ambient space is locally AdS), and (setting

k = £1, m, unnormalised) we find:

5
Rupysntepeled = Kyela — Kpaje (36)

= 0=mVagmp +mpVame — magVempy — mpVemy. (40)
Now, set d = 3 and introduce [“m, = 0,1%l, = const. Thus:

0 = mal°l’Vemy, = 0 = 1°1°V.emy,. (41)

PPmy = 0= 0=1°V.(I"mp) =  (I°V®) mp+11°Vemy,.  (42)
N——

=0

Also, (lcvclb) Iy < I°Vol’l, = 0 and hence [°V I’ =0 - geodesic

equation.
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Solving the equations of motion
Recall:

1“mg = 0= Kapl"1° =0 (43)

The relation between the covariant derivative in the ambient space X5 and

Poisson

the covariant derivative in the induced metric X, gives [-,_)(.m }
l%ef = lfbeg + [“Kapn®. (44)

Contracting (44) with 1°, we find

b b
1°15 = "1, e £ IM1°Kan®™.  (45)
~—~
ambient space geodesic eq. induced metric geodesic eq.

The surface is foliated by curves which are geodesics in the ambient

space.
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Solving the equations of motion

The surface with R = —2 is foliated by
curves which are geodesics in the ambient
space (with R = —6).

Analogue statement in R:
All developable surfaces (i.e. R = 0) are
ruled surfaces (i.e. foliated by straight

: Krivoshapko and Tvanov
lines) [20%05 aprean Vmo‘}, however the

=

A

converse is not true.
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Example 1: Euclidean AdS3, Poincaré-patch

Background:

ds® = Z% (dt® + da® + dz*) (46)

Solution for strip of varying width:
2(t, ) = \/7r(t)? — 22, (47)

Genralizes case of constant width studied in [.(_;H;’f”i”‘ ol “1'}.
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Example 2: Uniqueness?
Background:
ds® = Zl2 (dt® + da® + dz*) (48)

For elliptic boundary region, there are two hypersurfaces satisfying (30)
with the same boundary condition at z = 0. For one we find K < 0

everywhere, while for the other one we find K > 0 everywhere.
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Example 3: Lorentzian (global) AdSs, specelike surfaces

Background:
1 .
ds® = cos(0)? (—dt2 +do* + sm(0)2dq§2) , (49)
Solution:
t(¢,0) = toay [arctan (\/CSCQ(G) sec2(¢) — 1)} (50)

where tpqy[¢)] is the boundary condition at the asymptotic boundary

6 = 7/2 which we assume to be symmetric under ¢ — —¢.
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Example 4:

Let’s now search for timelike surfaces in Lorentzian AdS.

Timelike oscillating geodesic:

t(0) = +arctan ( _1E_’;_SZ2(?:2)S(9)2> , ¢ = const. (51)

where the "energy" E > 1 of the geodesic is related to its turning point

Omaz DY Omaee = arccos 1/E. we can construct surfaces of the form

E(¢)sin(0) cons
V-1+ E(¢)2cos(9)2> eonst: (52)

t(0, ¢) = + arctan <

where we have promoted F to a ¢-dependent parameter.

K diverges at § = 0 where the surfaces will have a conical singularity.
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From top-left to bottom-right: E(¢) = V2, E(¢) = 2sin(2¢) + cos(4¢) + 5, E(¢) = 5sin> (%‘3) + V3,
B(o) = tant ($) + V2, B > oo, and

B = (22

2 . cos(¢) 2
sin(¢)) +2for0<¢<1'r,E(¢)——‘L((sin(¢)) +2) for m < ¢ < 2m.
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Lemons, Observations:

» All lemons have "height" At = 7.

» Action inside finite Lemons is ;r
Ign + Ieny = 472, independent of E by ' ’,

. . "t
construction: These surfaces bound regions ‘

of the bulk whose action does not change ’
under infinitesimal deformations of their

boundary.

» Imaginary values of E(¢) lead to spacelike

surfaces that reach the boundary.

t(0,¢) =0, for E — oo; surface becomes
null boundary of WDW patch. i
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Lemons, Questions/Speculations:

» All lemons have "height" At = 7.
— Is there a specific TT deformation that
describes a theory living on this surface?
» Action inside finite Lemons is
Ipg + Iguy = 472, independent of E.
» Imaginary values of E(¢) lead to spacelike

surfaces that reach the boundary.

— Complexify coordinates?

t(0,¢) =6, for E — oo; surface becomes
null boundary of WDW patch.

— Value of action in this limit?

— E > 1 as regularisation of WdW-patch?

— WdAW patch arises naturally, without '

"infinite tension" limit of [QBé’Q"fjh ot “1]
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Kinematic space connection?
The solutions to the flow equation
KINK™ — K?=0. (30)

are foliated by geodesics of the ambient

space.

That means: these surfaces are described d N\
by curves in the space of geodesics 3 X\‘ \\
N

(~kinematic space [ggfgh ot “1'} ,

generalised in T
[gglegh et al.:l [37(17285}] et al.} I:S[?zdzgnﬁ et al.} ) ll‘k\\\

= Can we phrase our results from

a kinematic space perspective?
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Summary
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Summary and outlook

. 1 : [Caputa et al.] [Caputa et al.] [Boruch et al.] _ :
» Groundwork laid in L‘,‘f’,ﬁf\ e } Lo‘:;;: e } B‘,l’,{‘,‘, Lot } with path

integral optimization.

» In simple Euclidean case, extremising action under a dynamic cutoff

1\11r1| v et al.

surface reproduces equal time slice/CV proposal { 505

» Generalisation to Lorentzian case is non-trivial, with many challenges

(e.g. boundedness of action) {( e et al }

. . . . [Chandra et al. :
» Universal flow equation derived in L[.T_ﬁ“‘ Tt } can be solved quite

generally — suggests konnection to kinematic space.

» See also next talk by Andrew! &
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Gauss-Bonnet theorem
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Implications of the Gauss-Bonnet theorem

i Troyanov
Consider the Gauss-Bonnet theorem [H‘)f‘] ‘“"\}

R
/QZdVJr/Bngds+ dooac+ > po=2mx, (53)

corners c conical sing. s

As we are searching for 2d surfaces of constant scalar curvature, we find
/ EdV: EV<0 (54)
Q 2 2

So for x > 0 (includes all Lorentzian cases), surface either needs to reach

boundary or have conical singularities!
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Conical singularities in the Gauss-Bonnet formula

In order to derive the contribution of conical singularities, we start with

/ Edv + / kgds + 5 Qe+ AY(xJ\\iL<\] sing. — 27TX- (55)
2
Q oQ (old) corners ¢

We resolve the singularity by introducing a cut:

R
/QQOIVJF/M?lcg,dsjL Yo aet Y ac=2r(x—1). (56)

(old) corners ¢ new corners c

Comparing (55) and (56), we find

Xconical sing. = Z Qe+ 2T = Qe1 + Qo2 + 2w = 0. (57)

new corners c

with ae1 = —7. e = — (7 — 0), and deficit angle 9.
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identification

Left: Introducing a cut to derive contribution from conical singularities in

Euclidean case.

Right: Lorentzian deficit angle for lemon surface.
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Lorentzian case

For the Lorentzian Gauss-Bonnet theorem, see e.g. “ Lelzer } One has to
define the (always real valued) oriented Lorentzian angle § between two

future pointing normalised timelike vectors X and Y to satisfy
cosh(§) = —-X - Y. (58)

The Lorentzian Gauss-Bonnet-theorem then takes the form

R o
/Q2dV+/Bngds+ Yooa+ > s=0, (59)

corners c conical sing. s

Firstly, the right hand side automatically vanishes (x = 0), secondly,
traversing a closed timelike geodesic polygon in flat space yields the total

Lorentzian angle

a1z + a3 + ... + an1 = 0. (60)
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Application to Lemons

Assume FE indep. of ¢. Induced metric:

2 1 2 2
5= cos(62)? ( dtz +d92)7

with

4arctanh (tan <6‘m;z,2 )) =21 tan(Omaz,3)-

Hence:

% = —4r tan(bmas,3) = 47/ E? — 1.

(61)

(62)
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Application to Lemons

% = —4r tan(bmas,3) = —4m/ E? — 1.

Tangent vectors of boundary geodesics:
w_ [ XE E
Xi = 02 = 2
X7 EZ -1

5future conical sing. = arccosh (7X+ : X*) =27 tan(emaz,3)

Hence:

= 6past conical sing.

Gaus-Bonnet theorem

RV

9 + (Spast conical sing. + 6future conical sing. = 0.

is satisfied.

(64)
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Lemons in higher dimensions
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'Lemons" in higher dimensions

Let’s consider global Lorentzian AdSy,

ds® = COS} ik (—dt® + d6* + sin(0)*de® + sin(0)” sin(yp)*de®) ,  (68)

(boundary at @ = 7/2) and assume rotational symmetry. Ansatz:
(0,9, ) = £(0). (69)

Equation (30) then yields the ODE

dcot(0) £/ (0)f"(0) — 2 (csc(0) +2) £/(0)* (£/(0)° —1) =0,  (70)
4/ sin(260) cot(9) (1)

\/C + sin(20) cot?(6)

= f'(0)=+

10/ 12



1 1 < 9
05 1.0 15

/ _ 4/sin(20) cot(0) _
f1(6) = —|——C+Sin(29) — @ for C between —1 (blue) and 1 (red). AdSy4

boundary is at § = 7/2.

» C=0= f =1= null boundary of the WDW patch.
» C > 0= f <1= spacelike surface reaching to the boundary.

» C < 0= f'>1= Lemon like surface which turns around at finite
Omaz < /2.
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I I 2]
0.5 1.0 15

0 = t e m for C between —1 (blue) and 1 (red). AdSy4

boundary is at § = 7 /2.

Differences and similarities to d = 3 :
» Kopn # mmmak
» f/(0) = 1 for any C, hence induced metric (# AdS3) is degenerate at

tip; curvature singularity in Kretschmann scalar.

» "Height" (time-span) of AdS4>4 lemons depends on C' (~ turning
point).

12/12



References

R.

Arnowitt, S. Deser, and W. Misner. The dynamics of General Relativity. In L. Witten, editor,
Gravitation: an introduction to current research, chapter 7, pages 227-265. Wiley, New York, 1962. doi:
10.1007/s10714-008-0661-1.

Barbot, F. Béguin, and A. Zeghib. Prescribing Gauss curvature of surfaces in 3-dimensional
spacetimes Application to the Minkowski problem in the Minkowski space. Annales de l'Institut
Fourier, 61(2):511-591, 2011. doi: 10.5802/aif.2622. URL
https://aif.centre-mersenne.org/articles/10.5802/aif.2622/.

. Boruch, P. Caputa, D. Ge, and T. Takayanagi. Holographic path-integral optimization. JHEP, 07:

016, 2021a. doi: 10.1007/JHEP07(2021)016.

. Boruch, P. Caputa, and T. Takayanagi. Path-Integral Optimization from Hartle-Hawking Wave

Function. Phys. Rev. D, 103(4):046017, 2021b. doi: 10.1103/PhysRevD.103.046017.

H. A. Camargo, P. Caputa, and P. Nandy. Q-curvature and Path Integral Complexity. 1 2022.

o

Caputa, N. Kundu, M. Miyaji, T. Takayanagi, and K. Watanabe. Anti-de Sitter Space from
Optimization of Path Integrals in Conformal Field Theories. Phys. Rev. Lett., 119(7):071602, 2017a.
doi: 10.1103/PhysRevLett.119.071602.

. Caputa, N. Kundu, M. Miyaji, T. Takayanagi, and K. Watanabe. Liouville Action as Path-Integral

Complexity: From Continuous Tensor Networks to AdS/CFT. JHEP, 11:097, 2017b. doi:
10.1007/JHEP11(2017)097.

. Caputa, D. Das, and S. R. Das. Path integral complexity and Kasner singularities. JHEP, 01:150,

2022. doi: 10.1007/JHEP01(2022)150.

. Chagnet, S. Chapman, J. de Boer, and C. Zukowski. Complexity for Conformal Field Theories in

General Dimensions. Phys. Rev. Lett., 128(5):051601, 2022. doi: 10.1103/PhysRevLett.128.051601.

. R. Chandra, J. de Boer, M. Flory, M. P. Heller, S. Hoertner, and A. Rolph. Spacetime as a

quantum circuit. JHEP, 04:207, 2021. doi: 10.1007/JHEP04(2021)207.

. R. Chandra, J. de Boer, M. Flory, M. P. Heller, S. Hortner, and A. Rolph. Cost of holographic

path integrals. SciPost Phys., 14:061, 2023. doi: 10.21468/SciPostPhys.14.4.061.

. Czech, L. Lamprou, S. McCandlish, and J. Sully. Integral Geometry and Holography. JHEP, 10:

175, 2015. doi: 10.1007/JHEP10(2015)175.

12/12


https://aif.centre-mersenne.org/articles/10.5802/aif.2622/

. Czech, L. Lamprou, S. McCandlish, B. Mosk, and J. Sully. A Stereoscopic Look into the Bulk.
JHEP, 07:129, 2016. doi: 10.1007/JHEP07(2016)129.

. Czech, Y. D. Olivas, and Z.-z. Wang. Holographic integral geometry with time dependence. JHEP,
12:063, 2020. doi: 10.1007/JHEP12(2020)063.

. Darboux. Legons sur la theorie générale des surfaces et les applications géométriques du calcul infinitésimal: les
congruences et les équations lineaires aux dérivées partielles, des lignes tracées sur les surfaces. Number 2 in
Cours de géométrie de la Faculté des Sciences. Gauthier Villars, 1889. URL
https://books.google.es/books?id=dzteAAAACAAT.

. Fonda, V. Jejjala, and A. Veliz-Osorio. On the Shape of Things: From holography to elastica.
Annals Phys., 385:358-398, 2017. doi: 10.1016/j.a0p.2017.08.011.

. Hartle and R. Sorkin. Boundary Terms in the Action for the Regge Calculus. Gen. Rel. Grav., 13:
541-549, 1981. doi: 10.1007/BF00757240.

. Hayward. Gravitational action for space-times with nonsmooth boundaries. Phys. Rev. D, 47:
3275-3280, 1993. doi: 10.1103/PhysRevD.47.3275.

. Helzer. A relativistic version of the Gauss-Bonnet formula. Journal of Differential Geometry, 9(4):507
— 512, 1974. doi: 10.4310/jdg/1214432546. URL https://doi.org/10.4310/jdg/1214432546.

. Krivoshapko and V. Ivanov. Encyclopedia of Analytical Surfaces. Springer International Publishing,
2015. ISBN 9783319117737. URL https://books.google.de/books?id=cXTdBgAAQBAJ.

. Poisson. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press,
2004. ISBN 9781139451994. URL https://books.google.es/books?id=bk2XEgz_MLAC.

. Ryu and T. Takayanagi. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev.

Lett., 96:181602, 2006. doi: 10.1103/PhysRevLett.96.181602.

. Troyanov. Prescribing curvature on compact surfaces with conical singularities. Transactions of the
American Mathematical Society, 324(2):793-821, 1991. ISSN 00029947. URL
http://www. jstor.org/stable/2001742.

12/12


https://books.google.es/books?id=dzteAAAAcAAJ
https://doi.org/10.4310/jdg/1214432546
https://books.google.de/books?id=cXTdBgAAQBAJ
https://books.google.es/books?id=bk2XEgz_ML4C
http://www.jstor.org/stable/2001742

	Appendix
	References


