
FORM – a user’s memoirs

Thomas Hahn

Max-Planck-Institut für Physik
München

T. Hahn, Introduction to Mathematica and FORM – p.1

The Making of FormCalc

Attempt to compute boxes like this
with FeynCalc failed:

Problem was an inefficient
implementation of the fermion trace.

Z

Z

Z

Z

f

f

f

f

Today I might have used
Trace4[mu_, g__] := Block[{Trace4, s = -1},

Plus@@ MapIndexed[((s = -s) Pair[mu, #1] Drop[Trace4[g], #2])&, {g}]];

Trace4[] = 4

but in 1995 computation of a trace was a big mystery (to me)
and then there was FORM . . .

T. Hahn, Introduction to Mathematica and FORM – p.2

NoDoorCalc?

The name FormCalc actually derived from the fact that the
program was doing the same as FeynCalc, but using FORM
(more or less).

After the first release I received mail from Schörghuber, who
had registered FormCalc as a trademark (to compute some
kind of form factors for special doors). I was able to convince
them that there was no chance of mistaking one for the other
and they kindly allowed me to continue using the name.

Nowadays, the only FormCalc remaining is the one using
FORM.

T. Hahn, Introduction to Mathematica and FORM – p.3

Factor 2

The interface between Mathematica and FORM had always
been a weak point, i.e. it was not difficult to write down
Mathematica expressions that FORM would hiccup over,
e.g. f[a][b] (complex head).

Hence, in 2002, I sat down and tried very hard to write a
Mathematica equivalent that was approximately on-par with
the FORM code. Trying to generate the fewest numbers terms
from the beginning etc.

Result: Mathematica code still factor 2 slower than FORM.

T. Hahn, Introduction to Mathematica and FORM – p.4

Quantum Leaps in FORM

Abbreviationing: replace subexpressions by symbols.

FORM 2:

(nothing, i.e. keep subexpr in FORM)

T. Hahn, Introduction to Mathematica and FORM – p.5

Quantum Leaps in FORM

Abbreviationing: replace subexpressions by symbols.

FORM 3:

#procedure ToMma(expr)

#toexternal "%E,", ‘expr’

#endprocedure

#procedure FromMma(expr)

G ‘expr’ =

#fromexternal

;

#endprocedure

T. Hahn, Introduction to Mathematica and FORM – p.6

Quantum Leaps in FORM

Abbreviationing: replace subexpressions by symbols.

FORM 4:

argument mulM;

toPolynomial;

endargument;

T. Hahn, Introduction to Mathematica and FORM – p.7

Factorization

Ah yes, and there was factorization in FORM 4, too.

Before that:
L expr = (a + b)*(c + d);

print;

.sort
expr = a*c + a*d + b*c + b*d;

bracket a, b;

print;

.sort
expr = + a * (c + d)

+ b * (c + d);

collect f;

bracket f;

print;

.end
expr = + f(c + d) * (a + b);

T. Hahn, Introduction to Mathematica and FORM – p.8

FORM Executables

Availability of FORM executables was an issue for some time:

Early days:

• User’s responsibility to install FORM.

• FORM 2 commercial, fallback to FORM 1 was possible.

With FORM 3:

• Initially still user responsibility.

• After too many ‘bug reports’ included binaries.

With FORM 4:

• Sources included (to fix version).

• Pre-compiled executables included.

• Build script included (rarely used).

T. Hahn, Introduction to Mathematica and FORM – p.9

FORM Syntax

Only language that admits [x+1] as variable name!

* variables appearing in the CalcFeynAmp input and output

cf SumOver, PowerOf, Den, A0, IGram, List;

...

* variables that make it into Mma but don’t appear in the output

cf powM, sunM, intM, tensM, extM, paveM, cutM, numM, qfM, qcM;

...

* patterns

i [a], [b], [c], [d];

...

For, if any of the patterns makes it into Mathematica, this is
bound to give a failure notice.

T. Hahn, Introduction to Mathematica and FORM – p.10

FORM Syntax

Canonical ordering can be chosen:

v k2, k1, k3, k4;

L eps = e_(k1, k2, k3, k4);

.sort

eps = -e_(k2, k1, k3, k4);

T. Hahn, Introduction to Mathematica and FORM – p.11

FORM Syntax

Lack of scoping of local variables in #procedure.

Maybe do like Mathematica:

In[1]:= Module[{a}, Print[a]]

Out[1]= a$1099

T. Hahn, Introduction to Mathematica and FORM – p.12

Things I spent time on

On reflection, there are not many things that are ultimately
impossible in FORM, but for quite a few one needs to look at
the problem in a new way and devise an alternative approach,
as the straightforward one cannot be written down directly.

FORM needs some ‘getting used to.’

I suspect this is where (some of) its power derives from:
forcing the user to re-organize problems in a way more
tractable to the workings of FORM/the computer in general.

Still, in terms of overall development time it could be
worthwhile to come closer to the naive version.

T. Hahn, Introduction to Mathematica and FORM – p.13

Things I spent time on

Extracting the n-th argument of a function.

If n is known at compile time, workaround with . . . operator.

If n is known only at run time?

L test = int(Den(...), Den(...), ...);

$n = 0;

repeat;

$n = $n + 1;

once int(Den(?a), ?b) = Den($n,?a)*int(?b);

endrepeat;

How complicated could something like arg_(n,?a) be?

T. Hahn, Introduction to Mathematica and FORM – p.14

Things I spent time on

Getting the fewest number of terms.
– This is in general a hugely complex endeavor.

FormCalc currently brute-forces momentum conservation
(by default):

#define k1 "-k2 + k3 + k4"

#define k2 "-k1 + k3 + k4"

#define k3 "k1 + k2 - k4"

#define k4 "k1 + k2 - k3"

#define MomRange "1,2,3,4"

#do i = {‘MomRange’}

id k‘i’ = ‘k‘i’’;

#call ChainOrder

#enddo

T. Hahn, Introduction to Mathematica and FORM – p.15

Reduce Number of Terms

On a smaller scale: apply e.g. momentum conservation,

d =
1

(p1 + p2 − p3)2 +m2

=
1

p2
1
+ p2

2
+ p2

3
+ 2p1p2 − 2p2p3 − 2p1p3 +m2

,

whereas if p1 + p2 = p3 + p4 we could have instead

d =
1

p2
4
+m2

.

Something like tryreplace but for number-of-terms would be
very helpful.

T. Hahn, Introduction to Mathematica and FORM – p.16

Time to Adoption

Another one of these Quantum Leaps (I have not used so far):

format O4;

The reason is that I need a certain structure of the result to
correctly identify over which terms a SumOver extends.

Add possibility to exclude certain functions from optimization.

T. Hahn, Introduction to Mathematica and FORM – p.17

Mathematica vs. FORM – that emblematic comparison

Mathematica

• Much built-in
knowledge,

• ‘Big and slow’ (esp. on
large problems),

• Very general,

• GUI, add-on packages . . .

FORM

• Limited mathematical knowledge,

• ‘Small and fast’ (also on large
problems),

• Optimized for certain classes of
problems,

• Batch program (edit–run cycle).

T. Hahn, Introduction to Mathematica and FORM – p.18

FORM + Other Tools

FORM has a lot unique features not found in other programs.
Can we make it easier connecting FORM with other tools?

FORM already has pipes for external communication:
#external, #toexternal, #fromexternal.
But not straightforward to work with.

FormRun is an attempt to feed ‘arbitrary’ Mathematica
expressions into FORM:

FormRun[expr, (decl), (cmd)]

Still, the module structure of FORM input makes it somewhat
more complicated than just writing an expression out and
getting it back.

T. Hahn, Introduction to Mathematica and FORM – p.19

	The Making of FormCalc
	NoDoorCalc?
	Factor 2
	Quantum Leaps in FORM
	Quantum Leaps in FORM
	Quantum Leaps in FORM
	Factorization
	FORM Executables
	FORM Syntax
	FORM Syntax
	FORM Syntax
	Things I spent time on
	Things I spent time on
	Things I spent time on
	Reduce Number of Terms
	Time to Adoption
	Mathematica vs. FORM -- that emblematic comparison
	FORM + Other Tools

