WG3: High multiplicities (small systems)

SUMMARY

Carlota Andres Małgorzata Anna Janik

MPI@LHC Workshop Madrid 14-18.11.2022

Using pp and pA to cleanse AA from initial state physics (early 2000's)

Fig. G. Roland

Two particle correlations

Motivation: Ridge structure

- correlations between particles over large intervals of rapidity peaking at zero and π relative azimuthal angle.
- observed first at RHIC in Au-Au collisions.
- observed at LHC for high multiplicity pp and pA collisions.

[ATLAS Collaboration - arXiv:1609.06213]

Collective-like effects in small systems

Collectivity in small systems

Small systems to study as a tool to study the onset of hydrodynamic behavior

Signature of sub-nucleonic structure!

Collectivity in small systems: transport models

The elliptic flow in pA can be also described in transport models as the PHSD

Lucia Oliva, Mon 18:30

CGC calculations

- Generating non vanishing odd harmonics in the CGC
 - Going beyond the Glasma graph approximation in the projectile (Vila)
 - Going beyond eikonal in the target (Altinoluk)

Agostini, Altinoluk, Armesto, in preparation

Experimental results on flow on small systems

Elliptic flow in Pb-Pb

v_2 – tool to study the flow of produced particles

- non-central collisions : elliptical geometry
- expansion (flow) \rightarrow azimuthal modulation in momentum

• azimuthal mom. distribution → decomposed into a Fourier expansion, with anisotropic flow coefficients:

 $\frac{dN}{Nd\phi} = 1 + 2V_2 \cos\left(2(\phi - \Psi_{RP})\right) + higher harmonics (v_3, v_4, ...)$

Mass ordering at low p_T: described by hydrodynamics

Baryon vs meson splitting at high p_T: quark-level flow + recombination

Elliptic flow in small systems

Zuzana Moravcova, Thu. 16:30

- Mass ordering at low p_T: described by hydrodynamics
- Baryon vs meson splitting at high p_T: quark-level flow + recombination

• Characteristic flow behaviors of Pb-Pb have been observed in pp and p-Pb!

Flow of partons in small systems

Zuzana Moravcova, Thu. 16:30

- Mass ordering at low p_T: described by hydrodynamics
- Baryon vs meson splitting at high p_T: quark-level flow + recombination

- Model without quark coalescence cannot qualitatively describe trends seen in data
- Indication of partonic flow in small systems

Flow of partons in small systems

- Mass ordering at low p_T: described by hydrodynamics
- for the first time for prompt D0 in pp and nonprompt D0 in pPb

pPb 186 nb⁻¹ (8.16 TeV) pp 11.5 pb⁻¹ (13 TeV) CMS CMS 0.15 Prompt D^U CGC (Zhang et al.) $|y_{lab}| < 1$ Iv < 0.3 $\Box K_S^0$ Prompt D⁰ -- Prompt D⁰ 0.1 $\circ \Lambda \check{/} \overline{\Lambda}$ D⁰ from b hadrons ----- Prompt J/ψ ⇔h[±] D⁰ from B mesons $1.2 < |y_{lab}| < 2.4$ 0.2 ÷ Prompt J/ψ 0.05 v^{sub}2 v_2^{sub} ÷ 0.1 $N_{trk}^{offline} \ge 100$ -0.05 $185 \le N_{trk}^{offline} < 250$ 2 3 5 6 7 8 0 2 3 5 6 7 8 p_{_} (ĠeV) p_{_} (GeV)

- indications of collectivity of charm quarks in pp collisions
- indications of mass dependence of heavy-flavor hadron v2 in the pPb

Valentina Mariani, Tue. 10:30

J/Ψ ELLIPTIC FLOW IN SMALL SYSTEMS

- Investigate the presence of collective motion multiplicity pp and p-Pb events for J/Ψ, and compare with Pb-Pb results
 - Pb-Pb collisions:
 - Presence of strong collective effects
- p-Pb collisions:
 - Significant flow for $p_T > 3$ GeV/c, not explained by transport models
 - pp collisions (new):
 - No hints of collective behaviour observed for J/Ψ within uncertainties
- Presence of collective behavior in p-Pb and Pb-Pb, suggesting a common mechanism at play, still to be understood, with a significant difference w.r.t. pp data
- p-Pb results support what previously observed for open heavy flavour (and light-flavour particles)

13th MPI@LHC - 17/11/2022

OPEN HEAVY-FLAVOUR ELLIPTIC FLOW IN SMALL SYSTEMS

- **Positive** *v*₂ for HF decay **muons** in high-multiplicity p-Pb, consistent with previous HF decay **electron** measurement
 - Feature observed for lower p_T than for J/ Ψ , but different quark \rightarrow particle p_T scale + c,b \rightarrow e, μ decay kinematics
 - Well described by CGC model, and by AMPT from p_T >2 GeV/c
- Collective motion in high-multiplicity p-Pb collisions due to final-state effects (QGP droplet)? Or behaviour related to initial-state effects (e.g. gluon saturation)?

Fabio Colamaria

13th MPI@LHC - 17/11/2022

Flow of partons in small(er) systems

<u>y-p collisions from CMS</u>

 For the first time long-range correlations have been studied in γ-p collisions, identified from collisions and studied

• No collectivity effect seen so far (data match the Pythia simulations)

Valentina Mariani, Tue. 10:30

Flow of partons in small(er) systems

Flow in Ultraperipheral Collisions

Theory (3+1D framework with hydrodynamics): arXiv:2203.06094 Wenbin Zhao, Chun Shen, Bjorn Schenke claims that elliptic flow hierarchy between γ^*Pb and pPb is dominated by <u>longitudinal flow</u> <u>decorrelations.</u>

Sruthy Jyothi Das, Tue. 10:50

 v2 measured also in UPC from ATLAS

AMPT illustrations to show longitudinal decorrelation

Much larger longitudinal decorrelation!

N_{ch} ATLAS UPC data: Physical Review C 104, 014903 (2021) ATLAS *p*Pb data: Physical Review C 96, 024908 (2017)

Strangeness enhancement in small systems

Onset of collectivity, phase diagram

Marek Gaździcki, Mon. 17:50

NA61/SHINE program

Outlook

• Light nuclei more under control. Optimistic future

[https://indico.cern.ch/event/1078695/]

ſ

Nucleon-nucleon luminosity: $\mathcal{L}_{NN} = A^2 \cdot \mathcal{L}_{AA}$	optimistic scenario	0-0	Ar-Ar	Ca-Ca	Kr-Kr	In-In	Xe-Xe	Pb-Pb
	⟨Laa⟩ (cm ⁻² s ⁻¹)	9.5·10 ²⁹	2.0·10 ²⁹	1.9·10 ²⁹	5.0·10 ²⁸	2.3·10 ²⁸	1.6·10 ²⁸	3.3·10 ²⁷
	⟨Lnn⟩ (cm ⁻² s ⁻¹)	2.4·10 ³²	3.3·10 ³²	3.0·10 ³²	3.0·10 ³²	3.0·10 ³²	2.6·1032	1.4·10 ³²
	LAA (nb ⁻¹ / month)	1.6·10 ³	3.4·10 ²	3.1.10 ²	8.4·10 ¹	3.9·10 ¹	2.6·10 ¹	5.6·10°
	LNN (pb ⁻¹ / month)	409	550	500	510	512	434	242

