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Transverse momentum broadening (TMB)
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• High energy partons experience random kicks in hot or cold nuclear matter that cause their 
transverse momentum to increase over time 

k⊥

Transverse plane

k⊥ ≪ E

L

QCD medium (QGP, nucleus)

⟨k2
⊥⟩typ ∝ ̂q t• Normal diffusion scaling at LO  (from 2 to 2 

matrix element)



Q: What are the effects of quantum 
corrections on transverse momentum 

broadening? 



Transverse momentum broadening (TMB)
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Mueller, Wu, Xiao, Yuan (2016) Jia, Xiao, Yuan (2019)

• Probe the QGP in Heavy Ion Collisions: dijet azimuthal de-correlation, jet quenching

• Probe cold nuclear matter: SIDIS and  
forward  dijet production in eA 



TMB and Dipole S-matrix 
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• TMB is related to the scattering of color dipole off a strong background  field  Aμ

• Dipole S-matrix 

Path ordered exponential:
Aμ

P+ → ∞

S(x⊥) = e− 1
4 x2

⊥L ̂q(1/x⊥,L)

Relation to ̂q



Yet another quantum effect in eA 
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• In addition to the standard long-lived gluon fluctuations resummed by small x evolution in the 
shock wave approximation  

• Short-lived quantum fluctuations 
inside the nucleus 

ln
1
x

ln L ∼ ln A1/3

γ*

Deep Inelastic Scattering at small  x = Q2/s

Proton/Nucleus 



Quantum corrections to  ( or )̂q Qs
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• Potentially large double logs (DL) in transverse momentum broadening at NLO

⟨k2
⊥⟩ = ̂q0L (1 +

ᾱ
2

log2 L
τ0 )

[Liou, Mueller, Wu (2013)  
Blaizot, Dominguez, Iancu, MT (2014) ] k⊥ k′ ⊥

τ0 ∼ ℓmfp ≪ τ ≪ L

• Not the standard DGLAP double log: the factor 1/2 reflects the presence of multiple 
scattering constraint   (saturation boundary)k⊥ > ̂q τ ≡ Q2

s

NLO ∼ ᾱ∫
dk2

⊥

k2
⊥ ∫

dτ
τ

τ ≡
ω
k2

⊥

gluon formation time

τ0 ≪ τ ≪ L



• Traveling waves solutions: Derive sub-asymptotic behavior. We follow Brunet and Derrida’s 
(1988) and U. Ebert and W. van Saarloos (2000) approaches to FKPP equation (Fisher-
Kolmogorov-Petrovsky, Piskunov) - (population growth, wave propagation, etc)  

• First application to QCD in small x (Balitsky-Kovchebov equation) by Munier and Peschanski 
(2003) 

Geometric scaling and superdiffusion 

• The all order results was first derived in the DL approximation

Q2
s (L) ∝ L1+2 ᾱ

Anomalous scaling: super 
diffusive process

S(r⊥, L) → e−(r2
⊥Q2

s (L))1−2 ᾱ

Asymptotically: Lévy distribution 

⤳  non-Gaussian

MT, Caucal  2203.09407 [hep-ph]



Time dependence of the typical transverse momentum  
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ās = 0.2, q̂0 = 0.1 GeV3, t0 = 0.34 fm

tree level
resummed - numeric
resummed - analytic

ρs(Y) = log Q2
s (Y) = cY+b log Y + const .

L log L

c L + b log L

Q2
s ≃ ⟨k2

⊥⟩median ∝ L1+2 ᾱ

Nonlocal quantum corrections: anomalous 
system size dependence (super diffusion)

Universal behavior observed down to  L ≃ 3 fm
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Normal diffusion

Super diffusion 

Y ≡ log
L
τ0

c ≃ 1 + 2 ᾱ



Next to double logarithmic evolution 
• Resummation of NDLA from BFKL or DGLAP + saturation boundary 

BFKL or DGLAP evolution 

d
dY

ρs(Y) ≃ ≃ 1 + 2 ᾱ +𝒪(ᾱ)

DLA  NDLA  



Next to double logarithmic evolution 

ρ ≡ ln
k2

⊥

μ2
Y ≡ ln

L
τ0

• Solve linear NLL-BFKL with saturation boundary   (non-linear effects) ρ > ρs(Y)

• The details of non-linear terms are not relevant to derive the asymptotics of the saturation scale 
and the behavioor of the TMB distribution at   [Mueller, Triantafyllopoulos  (2002) 
(ancu, Itakura, McLerran (2002)] 

k⊥ > Qs(L)

• Saturation condition  ρ > ρs(Y) ≡ ln
Q2

s (L)
μ2

Iancu (2014) MT, Blaizot (2014) Vaidya (2021)  

• N.B.    Q2
s (L) ≡ ̂q(L) L

• Expansion of BFKL kernel around DLA:  γ = 0



All orders - Geometric scaling 

• We look for a solution of the form (solve around the scaling solution for running coupling) 

• To obtain the sub-asymptotic 
corrections we use the so-called 
leading-edge expansion 

U. Ebert and W. van Saarloos (2000) 
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Universal terms up to  for Y−3/2

• NNLO BFKL and beyond do not contribute to the universal terms

ρs(Y) ≡ ln
Q2

s (L)
μ2

≡ ln
̂q(L)L
μ2

• Non universal terms start at order  as can be seen by the substitution Y−3/2 Y → Y + Y0

b0 =
1
β0

= −
1
Bg

MT, Caucal  2209.08900 [hep-ph]

NLL BFKL



Summary 
• TMB in QCD is a super-diffusive process (non-gaussian) due to logarithmically 

enhanced quantum corrections ⟶ anomalous system size dependence  

• Exhibits geometric scaling and heavy tails akin to Lévy random walks ⟶  

Substantial departure from the LO Molière scattering  
• Systematic approach for computing universal asymptotic and pre-asymptotic 

solutions for transverse momentum broadening  
• Using DGLAP or NLL BFKL (due to the DL nature of the problem) we have  

computed all of the universal terms in the asymptotic expansion of the saturation 
scale  

• Application: non-Gaussian initial condition for BK evolution at small x 



Backup



Universal terms up to  Y−3/2

MT, Caucal  2209.08900 [hep-ph]



Tree Level and large media
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q̂0 = 0.5 GeV2/fm, L = 6 fm

tree level

TMB distribution at leading order - resummation of multiple scattering  
Gaussian for   and exhibits the power law tail  for k⊥ < Qs ∼ ̂q L k−4

⊥ k⊥ > Qs

k−4
⊥

Normal diffusion 
⟨k2

⊥⟩typ ∝ L

power

P(k⊥) =
4π
̂qL

e− k2
⊥
̂qL

̂q = CR ∫q⊥

q2
⊥

d2σ
d2q⊥

≃ 4πα2
s n log

qmax

μ2

Diffusion coefficient at tree level 

multiple scattering

 : Medium size L
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Running coupling case (vs numerics)
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• At large Y (leading contribution): 

• Small  Y (leading edge expansion 
diverges). Instead expand around 
the saturation line
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Systematic approach for universal sub-leading terms 
• Fixed coupling

• Running coupling

First four terms conjectured by Iancu and Triantafyllopoulos (2015) 

Caucal, MT, 2109.12041 [hep-ph] 

Caucal, MT, 2203.09407 [hep-ph] 

+
7ξ2

1

180
1

(4b0Y)1/6
+ ξ1 ( 5

108
+18b0) 1

(4b0Y)1/3
+ b0 (1−8b0) ln(Y)

4b0Y
+ 𝒪 (Y−1/2)

ρs(Y) = Y + 2 4b0Y + 3ξ1(4b0Y)1/6 + ( 1
4

−2b0) ln(Y) + κ
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Running coupling case

• Modified scaling variable  x ≡ log
k2

⊥

Q2
s

→ x ≡
log k2

⊥

Q2
s

Y
∼ ᾱ(Y) log

k2
⊥

Q2
s

• Slower evolution w.r.t.  Y ≡ log
L
τ0

ᾱ(k⊥) ≃
b

ln k2
⊥/Λ2

QCD
b =

12Nc

11Nc − 2Nf

• One-loop running coupling: 

with


