CMS results on Heavy Flavor Flow

- Andre Ståhl on behalf of the CMS Collaboration
- European Organisation for Nuclear Research
- 13th International workshop on Multiple Partonic Interactions at the LHC

Heavy Quarks in HI collisions

- Heavy quarks ($m_{c,b} >> \Lambda_{QCD}$): high Q² processes \rightarrow production well understood in pQCD.
- Produced in the initial hard scattering \rightarrow experience the full space-time evolution of the QGP.

Andre Stahl - CMS results on Heavy Flavor Flow

Hadronization

Hadron Gas

Time

- Heavy quarks ($m_{c,b} >> \Lambda_{QCD}$): high Q² processes \rightarrow production well understood in pQCD.
- Produced in the initial hard scattering \rightarrow experience the full space-time evolution of the QGP.
- The QGP is expected to modify the HF hadron production.

Quarkonia

+Suppression Medium-induced dissociation

MPI@LHC 2022

Andre Stahl - CMS results on Heavy Flavor Flow

Hadronization

Hadron Gas

Time

HF hadrons

HF quarks

+Parton energy loss via collisional and radiative interactions

Heavy Quarks anisotropy in HI collisions

Space anisotropy

Momentum anisotropy

System symmetry Elliptic flow (v₂)

Fluctuations Triangular flow (v₃)

Andre Stahl - CMS results on Heavy Flavor Flow

MPI@LHC 2022

HF flow mechanism:

- Coalescence/regeneration.
- Low p_T: hydrodynamics + coll. E. loss.
- High p_T : path-dependent parton E. loss.

17/11/22

2

Andre Stahl - CMS results on Heavy Flavor Flow

OUTLINE

Andre Stahl - CMS results on Heavy Flavor Flow

OUTLINE

D⁰ flow fluctuations in PbPb

- v₂{n} probe event-by-event fluctuations from initial geometry and final state effects.
- $h^{\pm} \sim D^{0} v_{2}\{4\}/v_{2}\{2\}$ at cent < 40% \rightarrow suggest initial state fluctuations are dominant.
- Hint of larger charm quark final state fluctuations at peripheral collisions.

MPI@LHC 2022

Andre Stahl - CMS results on Heavy Flavor Flow

- D^0 and h^{\pm} flow converges at high $p_T \rightarrow$ path-dependent energy loss.
- No model is able to describe the data over the full centrality and p_T ranges.

Andre Stahl - CMS results on Heavy Flavor Flow

D⁰ flow in PbPb

• $h^{\pm} v_n > D^0 v_n > 0$ at $p_T < 6$ GeV \rightarrow collective motion of light quarks larger than charm quarks.

Andre Stahl - CMS results on Heavy Flavor Flow

Charmonium flow in PbPb

CMS-PAS-HIN-21-008 NEW!

MPI@LHC 2022

- First measurement of Ψ(2S) flow.
- $\Psi(2S) v_2 \gtrsim J/\Psi v_2 > 0 \rightarrow hint of larger$ v₂ for excited states.
- $\Psi(2S) v_3 \sim J/\Psi v_3 \sim 0.$

Andre Stahl - CMS results on Heavy Flavor Flow

6

Charmonium flow in PbPb

CMS-PAS-HIN-21-008 NEW!

MPI@LHC 2022

- First measurement of Ψ(2S) flow.
- $\Psi(2S) v_2 \gtrsim J/\Psi v_2 > 0 \rightarrow hint of larger$ v_2 for excited states.
- $J/\Psi v_2 > b \rightarrow J/\Psi v_2 > 0 \rightarrow$ different flow for charm and beauty quarks.
- v₂ increase and then decrease from central to peripheral events \rightarrow as expected by hydrodynamics.

• $\Psi(2S) v_3 \sim J/\Psi v_3 \sim b \rightarrow J/\Psi v_3 \sim 0$.

Bottomonium flow in PbPb

PLB 819 (2021) 136385 **FINAL**

- Y(1S) v_2 consistent with 0 \rightarrow no significant bottomonium collectivity.
- Current precision will be improved with future LHC Run 3/4 data \rightarrow help constrain models.

MPI@LHC 2022

Andre Stahl - CMS results on Heavy Flavor Flow

Summary of HF v₂ in PbPb

CMS-PAS-HIN-21-008

MPI@LHC 2022

Andre Stahl - CMS results on Heavy Flavor Flow

Low p_T :

- $v_2(h) > v_2(D) > v_2(J/\Psi) > v_2(b) > v_2(Y) \sim 0$
- Thermalization \rightarrow mass ordering

High p_T:

- $v_2(h) \sim v_2(D) \sim v_2(J/\Psi) \sim v_2(b)$
- Energy loss

• HF flow in large systems • $D^0 v_2\{N\}$ in PbPb. •(b \rightarrow)D⁰ v_n in PbPb. •Quarkonium v_n in PbPb.

MPI@LHC 2022

Andre Stahl - CMS results on Heavy Flavor Flow

OUTLINE

D^o elliptic flow in small systems

- First measurement of D⁰ v2 in pp collisions.
- Indication of nonzero charm flow \rightarrow comparable with light hadrons.
- Positive D⁰ v₂ of observed at high multiplicities \rightarrow diminish towards lower multiplicities.

MPI@LHC 2022

Andre Stahl - CMS results on Heavy Flavor Flow

$b \rightarrow D^0$ elliptic flow in pPb

MPI@LHC 2022

- First measurement of $b \rightarrow D^0 v_2$ in pPb.
 - v₂ consistent with 0.
- Mass hierarchy at lower p_T .
- CGC model consistent with data.
 - Although with large uncertainties

NEW! CMS-PAS-HIN-21-001

- Y(1S) v_2 measured for the first time in pPb $\rightarrow v_2 \sim 0$ regardless of system size.
- Hint of different behaviour between charmonia and bottomonia.

MPI@LHC 2022

Andre Stahl - CMS results on Heavy Flavor Flow

$Y(1S) v_2 in pPb$

NEW! CMS-PAS-HIN-21-001

- Y(1S) v_2 measured for the first time in pPb $\rightarrow v_2 \sim 0$ regardless of system size.
- Hint of different behaviour between charmonia and bottomonia.
- Results described by MC model (medium response + no Y regeneration).

MPI@LHC 2022

$Y(1S) v_2 in pPb$

Andre Stahl - CMS results on Heavy Flavor Flow

Andre Stahl - CMS results on Heavy Flavor Flow

MPI@LHC 2022

Summary of HF v₂ in pPb

- Low p_T:
 - $v_2(h) > v_2(D) \sim v_2(J/\Psi) > v_2(b \rightarrow D) \sim v_2(Y) \sim 0$
- High p_T:
 - $v_2(h)$? $v_2(D) \sim v_2(J/\Psi) \sim v_2(b \rightarrow D) \sim v_2(Y) \sim 0$

Several exciting HF flow results published by CMS (link).

• HF flow in PbPb collisions:

- D⁰ flow fluctuations compatible with light hadrons but hint of larger charm quark final state fluctuations in peripheral events.
- Significant collectivity measured for charm quarks.
- Y(nS) flow consistent with 0 but $b \rightarrow D^0$ and $b \rightarrow J/\Psi v_2 > 0$.

- Hint of nonzero charm flow in pp comparable to light hadrons.
- Mass hierarchy of HF flow seen in small and large systems.
- Y(1S) v₂~0 regardless of system size.

MPI@LHC 2022

6

5 p_ (GeV/c)

-0.05

SUMMARY

Andre Stahl - CMS results on Heavy Flavor Flow

13

Thank you for your attention!

MPI@LHC 2022

Andre Stahl - CMS results on Heavy Flavor Flow

Andre Stahl - CMS results on Heavy Flavor Flow

