Medium-enhanced $g \rightarrow c\bar{c}$ radiation

M. Attems, J. Brewer, GMI, A. Mazeliauskas, S. Park, W. v.d. Schee, U. A. Wiedemann arXiv.2203.11241, submitted to JHEP arXiv.2209.13600, submitted to PRL

G.M. Innocenti M. Attems, J. Brewer, A. Mazeliauskas, S. Park, W. van der Schee, U. Wiedemann (CERN)

MPI@LHC 2022

Heavy flavors production in proton-proton collisions

m_b ~ 4.18 GeV **m**_c ~ 1.27 GeV **∧**_{QCD} ~ 200 MeV

→ **short-distance** high-momentum transferred

→ mass threshold removes many non-perturbative effects

 \rightarrow pQCD can predict the total heavy-flavour (HF) production

"Perturbative" cross-sections in elementary collisions:

 \rightarrow set the yields for heavy-flavour production in heavy-ions \rightarrow Quark Gluon Plasma only modifies the p_T distribution of heavy-quarks.

M. Cacciari et al., JHEP 10 (2012) 137

Dominant medium-modification of HQ in the QGP

G.M. Innocenti, Medium enhanced $g \rightarrow c\bar{c}$ production, MPI@LHC (Madrid)

→ How? heavy quarks rescatter inside the QGP

m_b ~ 4.18 GeV **m**_c ~ 1.27 GeV **T_{QGP}** ~ 300 MeV **∧**_{QCD} ~ 200 MeV

Modification of the parton shower:

• splitting function $c \rightarrow cg$ can be modified by the QGP

 $\tau_{\rm hard} \ll \tau_{\rm c \to cg}^{\rm med} \ll \tau_{\rm hadr}$

\rightarrow enhanced gluon radiation from c and b quarks

→ Observed experimentally via modification of high-p_T spectra of heavy-flavour hadrons

> BDMPS, Nucl.Phys., B484:265–282, 199 B.G. Zakharov, JETP Lett., 63:952-957, 1996. Y.L. Dokshitzer, D.E Kharzeev, Phys.Lett. B 519, 199-206, 2001

Heavy-quark production from collinear $g \rightarrow c\bar{c}$

G.M. Innocenti, Medium enhanced $g \rightarrow c\bar{c}$ production, MPI@LHC (Madrid)

• $\mathbf{g} \rightarrow c\bar{c}$ splittings originated in the parton shower of high-p_T gluon jets: → long-distance process $\tau_{g \rightarrow c\bar{c}} \gg \tau_{hard}$ \rightarrow g \rightarrow cc̄ splitting modified by the medium!

- features of the in-medium calculation of $g \rightarrow c\bar{c}$ splitting function with BDMPS-Z
- <u>One</u> experimental signature for $g \rightarrow c\bar{c}$ modifications: $D^0\overline{D}^0$ production in high-p_T jets

cc̄ pairs in high-p⊤ gluon jets

 $\hat{\mathbf{S}}$ = center of mass energy of partonic scattering

 $\mathbf{O}^2 \ll \hat{\mathbf{s}}$

 \rightarrow preferentially select g $\rightarrow c\bar{c}$ splittings → collinear limit of QCD

$$\hat{\sigma}^{g\,g\to c\,\bar{c}\,X} \xrightarrow{Q^2 \ll \hat{s}} \hat{\sigma}^{g\,g\to g\,X} \otimes \frac{\alpha_s}{2\pi} \frac{1}{Q^2} P_{g\to c\bar{c}}(z)$$

$c\bar{c}$ pairs in high-p_T gluon jets

 $\hat{\mathbf{s}}$ = center of mass energy of partonic scattering

 \rightarrow preferentially select g $\rightarrow c\bar{c}$ splittings → collinear limit of QCD

$$\hat{\sigma}^{g\,g\to c\,\bar{c}\,X} \xrightarrow{Q^2 \ll \hat{s}} \hat{\sigma}^{g\,g\to g\,X} \otimes \frac{\alpha_s}{2\pi} \frac{1}{Q^2} P_{g\to c\bar{c}}(z)$$

- L medium length

In-medium $g \rightarrow c\bar{c}$ splitting function

<u>arXiv:2203.11241</u> → BDMPS-Z formalism to calculate in-medium $P_{g \to c \bar{c}} = P_{g \to c \bar{c}}(E_g, k_c, z, \hat{q}, L)$

Medium properties and $\mathbf{g} \rightarrow c\bar{c}$ kinematics: $\cdot \hat{\mathbf{q}}$ average squared transverse momentum

$$\int_{0}^{\text{tot}} = \left(\frac{1}{Q^2} P_{g \to c \bar{c}}\right)^{\text{vac}} + \left(\frac{1}{Q^2} P_{g \to c \bar{c}}\right)^{\text{med}}$$

$$\int_{0}^{\infty} dt \int_{t}^{\infty} d\bar{t} \int d\mathbf{r}$$

$$\int_{0}^{(t-\bar{t})-\epsilon|t|-\epsilon|\bar{t}|} e^{-\frac{1}{4}\int_{\bar{t}}^{\infty} d\xi \,\hat{q}(\xi,z) \,\mathbf{r}^2} e^{-i \,\mathbf{\kappa} \cdot \mathbf{r}} \qquad (3)$$

$$+ \frac{z^2 + (1-z)^2}{z(1-z)} \frac{\partial}{\partial \mathbf{x}} \cdot \frac{\partial}{\partial \mathbf{r}} \left[\mathcal{K} \left[\mathbf{x} = 0, t; \mathbf{r}, \bar{t} \right] \right].$$

From the calculation: $\rightarrow P_{g \to c\bar{c}}^{\text{med}} \sim \mathcal{O}\left(\frac{\langle \mathbf{q}^2 \rangle_{\text{med}}}{\mathbf{O}^2}\right)$

From model extraction in central PbPb data: $\langle q^2 \rangle_{med} = \hat{q}L$ from 1 to 8 GeV² (conservative)

$$\rightarrow \langle q^2 \rangle_{\rm med} \sim m_c^2$$

$$\rightarrow P_{g \to c\bar{c}}^{\text{med}} \sim \mathcal{O}\left(\frac{m_c^2}{Q^2}\right) \qquad P_{g \to c\bar{c}}^{\text{vac}}(z) = z^2 + (1-z)^2 +$$

• $P_{g \to c\bar{c}}^{med}$ has same "magnitude" of the mass term of $P_{g \to c\bar{c}}^{vac}$, known to give origin to sizeable effects → effect of $P_{g \to c\bar{c}}^{med}$ likely to be relevant

G.M. Innocenti, Medium enhanced $g \rightarrow c\bar{c}$ production, MPI@LHC (Madrid)

$P_{g \rightarrow c\bar{c}}^{med}$: "magnitude" of the in-medium modification

 $\langle q^2 \rangle_{med} \sim \hat{q}L$ average squared transverse momentum that a parton acquire in a medium of length L

QGP with length L

Enhancement of g $\rightarrow c\bar{c}$ **splittings**

→ Gluons which would not split in vacuum can split if in-medium scatters occurs

→ increase of a "conserved" and "traceable" quantity via interaction with the medium

G.M. Innocenti, Medium enhanced $g \rightarrow c\bar{c}$ production, MPI@LHC (Madrid)

 $\mathbf{k}_{\mathbf{c}} \rightarrow \text{relative transverse}$ momentum of the $c\bar{c}$ pair

increases of k² due to transverse momentum broadening on the individual quarks: \rightarrow conserves splitting probability

Numerical results for $P_{g \to c\bar{c}}^{med} / P_{g \to c\bar{c}}^{vac}$

 \rightarrow Multiple soft-scattering approximation \rightarrow QGP brick with $\hat{q}L = 4 \text{ GeV}^2$

 \rightarrow the formalism that describes enhanced gluon radiation in the QGP also predicts a **<u>sizeable</u>** enhancement of the $c\bar{c}$ radiation

G.M. Innocenti, Medium enhanced $g \rightarrow c\bar{c}$ production, MPI@LHC (Madrid)

Depletion of low k²c splittings due to the in-medium broadening

Experimental strategy for $g \rightarrow c\bar{c}$ enhancement

Due to $g \rightarrow c\bar{c}$ enhancement, a larger fraction of $D^0\overline{D}^0$ -tagged jets expected in heavy-ions \rightarrow dedicated MC study to provide a first assessment of the feasibility of such measurement

G.M. Innocenti, Medium enhanced $g \rightarrow c\bar{c}$ production, MPI@LHC (Madrid)

High-p_T jets with a $D^0\overline{D}^0$ pair inside the jet code:

- <u>D-meson reconstruction</u>
 - constraints on the charm-quarks kinematics
 - accessible down to low p_T in heavy-ions

Monte Carlo study with Pythia

- Anti- k_T "full" jets with FastJet (R=0.4)
- one $D^0\overline{D}^0$ per jet
- only prompt D⁰ contribution considered (c \rightarrow D⁰)

- Fully reconstructed hadronic D⁰ decays

Challenging measurement:

 \rightarrow Based on expected yields, the measurement could be within reach with HL-LHC G.M. Innocenti, Medium enhanced $g \rightarrow c\bar{c}$ production, MPI@LHC (Madrid)

 $L_{int} = 0.5 \text{ fb}^{-1} \text{ pp} \sim 10 \text{ nb}^{-1} \text{ PbPb}$ (no quenching)

• But also $c\bar{c}$ -tagging techniques high-p_T jets or tagging of semi-leptonic charm decays \rightarrow sample ~ entire $c\bar{c}$ statistics

 \rightarrow ideal strategy: include all modified splitting functions in the parton shower (currently not available)

This simplified strategy relies on few realistic assumptions/approximations (arXiv:2203.11241) \rightarrow captures the qualitative features of the in-medium $g \rightarrow c\bar{c}$ modifications

G.M. Innocenti, Medium enhanced $g \rightarrow c\bar{c}$ production, MPI@LHC (Madrid)

A simplified procedure:

• identify and reconstruct the $g \rightarrow c\bar{c}$ kinematics in Pythia "reweigh" each splitting to accounts for modified $g \rightarrow c\bar{c}$ probability

$$E_{c\bar{c}}(E_g, k_c^2, z) = 1 + \frac{\left(\frac{1}{Q^2} P_{g \to c\bar{c}}\right)^{\text{med}}(E_g, k_c^2, z)}{\left(\frac{1}{Q^2} P_{g \to c\bar{c}}\right)^{\text{vac}}(k_c^2, z)}$$

N_{iets} as a function of jet pT

M. Attems, J. Brewer, GMI, A. Mazeliauskas, S. Park, W. v.d. Schee, U. A. Wiedemann arXiv.2209.13600, submitted to PRL

Parton shower in vacuum (Pythia pp)

Corrected for jet quenching:

- 10% p_T shift for both $D^0\overline{D}^0$ -tagged and inclusive jets
 - \rightarrow baseline to establish the effect of $P_{g \rightarrow c \bar{c}}^{med}$

Reweighed to account for modified $g \rightarrow c\bar{c}$ splitting function: \rightarrow magnitude of the effect likely to increase with more differential observables

N_{iets} as a function of jet pT

M. Attems, J. Brewer, GMI, A. Mazeliauskas, S. Park, W. v.d. Schee, U. A. Wiedemann arXiv.2209.13600, submitted to PRL

consequence of modified $g \rightarrow c\bar{c}$ splitting function

Push for new theoretical and experimental developments:

- parton showers including the in-medium modifications of all splitting functions \rightarrow more differential observables
- high-luminosity heavy-ion runs, improved detector capabilities and new analysis techniques

Conclusions

ALICE 3 Letter of Intent, CERN-LHCC-2022-009, arXiv:2211.02491

jet $p_T[\text{GeV/c}]$

Conclusions

Maximilian Attems Jasmine Brewer Gian Michele Innocenti Aleksas Mazeliauskas Sohyun Park Wilke van der Schee Urs Wiedemann

Thank you for your attention!

BACKUP SLIDES

To exploit this physics program \rightarrow designed the ultimate HI detector at the LHC

- Ultra-light pixel layers, also inside the beam pipe $\rightarrow \sim \mu m$ DCA resolution, crucial for HF at low p_T
- PID from low to high momentum and tracking over $|\eta| < 4$

ALICE 3 for Run 5 and 6

ALICE 3 Letter of Intent, CERN-LHCC-2022-009, arXiv:2211.02491 Lol submitted in October '21 **Review concluded in March '22**

		ALICE 2							ALICE 2.1							ALICE 3			
LHC		LHC			LHC			LHC				LHC			LHC				
LS2		Run 3				LS3			Run 4				LS4			Run 5+6			
2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	20

Embedding $P^{med}_{\mathfrak{g}\rightarrow c\bar{c}}$ in the parton shower

- \rightarrow ideal strategy: include all modified splitting functions in the parton shower (currently not available)

This simplified strategy relies on few realistic assumptions/approximations:

- $g \rightarrow c\bar{c}$ splitting function is small (\rightarrow Sudakov factor can be "linearized")
- Energy loss of gluon prior to splitting (not included) would likely increase the magnitude of the enhancement

 \rightarrow Modifications of $c \rightarrow cg$ splittings not relevant for this observable (integrated in D^0 , \overline{D}^0 pT)

G.M. Innocenti, Medium enhanced $g \rightarrow c\bar{c}$ production, MPI@LHC (Madrid)

A simplified procedure

- identify and reconstruct the $g \rightarrow c \bar{c}$ kinematics in Pythia "reweigh" each splitting to accounts for modified $g \rightarrow c\bar{c}$ probability

$$k_{c}^{2}, z) = 1 + \frac{\left(\frac{1}{Q^{2}}P_{g \to c\bar{c}}\right)^{\text{med}}(E_{g}, k_{c}^{2}, z)}{\left(\frac{1}{Q^{2}}P_{g \to c\bar{c}}\right)^{\text{vac}}(k_{c}^{2}, z)}$$

G.M. Innocenti, Medium enhanced $g \rightarrow c\bar{c}$ production, MPI@LHC (Madrid)

$P_{g \to c\bar{c}}^{med}$: formation time

Heavy-flavour production in the parton shower approach

 $\overline{\mathbf{q}}$ 00 \mathbf{Q} q

(b)

(d)

E. Norrbin, T. Sjöstrand, Eur. Phys. J. C17, 137-161

Not an exact $\mathcal{O}(\alpha_s^3)$, but it catches the leading-log aspects of the multiple-parton-emission phenomenon.

- hard scattering, short-distance, $2 \rightarrow 2$ process
- three classes of events: pair creation, flavour excitation, gluon splitting

(a,b) Leading order $\mathcal{O}(\alpha_s^2)$ flavour creation:

- $gg
 ightarrow Q\bar{Q}$, $q\bar{q}
 ightarrow Q\bar{Q}$
- $gg \rightarrow QQ$ dominant LO mechanism at LHC energies
 - → back-to-back QQ pairs

(c) Pair creation (with gluon emission)

(d) Flavour excitation (with gluon emission): HF from the PDF of one beam particle is put on mass shell by scattering against a parton of the other beam. ~ DGLAP $g \rightarrow Q\bar{Q}$ process.

- hard scale of the scattering $Q^2 \ge m_c^2$
 - \rightarrow ~ uniform $\Delta \Phi$ distribution of QQ pairs

(e) gluon splitting \rightarrow peaked at $\Delta \Phi = 0$

(f) Events classified as gluon splitting but of flavour-excitation character: a gluon first branches to QQ and the Q later emits another gluon that is the one to enter the hard scattering

Parton showers use parton splitting functions to evaluate branching probabilities at each splitting: \rightarrow reweighting procedure based on modification of the Sudakov factor S (\rightarrow no splitting probability)

Embedding $P_{g \rightarrow c\bar{c}}^{med}$ in Pythia parton showers

Formation time of $g \rightarrow c\bar{c}$ splittings

$N_{jets}^{c\bar{c}}/N_{jets}$ to constrain charm mass in pQCD

M. Mangano, P. Nason, Physics Letters B 285 (1992) 160-166

 \rightarrow measurement of the production rate of $c\bar{c}$ pairs from gluons in hadronic Z decays

ALEPH Collaboration / Physics Letters B 561 (2003) 213-224

G.M. Innocenti, Medium enhanced $\mathbf{g} \rightarrow \mathbf{c}\bar{\mathbf{c}}$ production, MPI@LHC (Madrid)

$g \rightarrow c\bar{c}$ splitting rate in ALEPH

ALEPH, Phys. Lett. B 561:213-224 (2003)

• $g_{c\bar{c}}$ is an important test of perturbative QCD at the Z scale

- $\cdot g \rightarrow c \bar{c}$ is a background for heavy-quark analyses and for Higgs-boson searches
- $g_{c\bar{c}}$ was at that time predicted to be large, from 1.4% to 2.5%

 \rightarrow semileptonic (e,µ) decays of the c quarks from gluon splitting in the lowest energy jet of a three jet event

$$\bar{c}_{\bar{c}} = (3.32 \pm 0.28(\text{stat}) \pm 0.42(\text{syst}))\%$$

 $g_{c\bar{c}}^{\mu} = (2.99 \pm 0.38(\text{stat}) \pm 0.72(\text{syst}))\%$

 $g_{c\bar{c}} = (3.26 \pm 0.23(\text{stat}) \pm 0.42(\text{syst}))\%$

D^{*} and lepton \rightarrow OPAL, Eur. Phys. J. C 13 (2000) 1 **D**^{*} → **ALEPH**, Eur. Phys. J. C 16 (2000) 597 lepton/event shape \rightarrow L3, Phys. Lett. B 476 (2000) 243

$R_{g \rightarrow c \bar{c}}$ in pp collisions at RHIC

G.M. Innocenti, Medium enhanced $g \rightarrow c\bar{c}$ production, MPI@LHC (Madrid)

STAR Collaboration, Phys.Rev.D79:112006 (2009)

In-medium broadening of $g \rightarrow c\bar{c}$

→ in-medium path length dependence of transverse momentum broadening (<k²_c> ~ $\hat{q}L$) \rightarrow Paper in preparation!

Modified cc-yields in parton showers

Parton showers use parton splitting functions to evaluate branching probabilities at each splitting: \rightarrow ideal setup: parton-shower simulation that include all in-medium modified splitting functions

Under the following hypotheses:

- $g \rightarrow c\bar{c}$ is a negligible process for the global shower evolution \rightarrow ignore modifications to other splitting functions
- induced gluon radiation is "small" \rightarrow effect on gluons before the splitting is negligible
- limit to charm p_T-integrated observables
 - \rightarrow ignore the energy loss of individual quarks

G.M. Innocenti, Medium enhanced $g \rightarrow c\bar{c}$ production, MPI@LHC (Madrid)

$$\overline{D}^{0} \qquad P_{g \to gg}^{vac}(z), P_{q \to qg}^{vac}(z), P_{g \to q\bar{q}}^{vac}(z), P_{g \to q\bar{q}}^{vac}(z), P_{g \to q\bar{q}}^{vac}(z), P_{g \to q\bar{q}}^{med}(z), P_{g \to q\bar{q}}^{med}(z)$$

Reweight only the properties of the g \rightarrow cc splittings:

$$P_{g \to c\bar{c}}^{\text{medium}} = 1 + \frac{P_{g \to c\bar{c}}^{\text{mod}}}{P_{g \to c\bar{c}}^{\text{vac}}} / \frac{P_{g \to c\bar{c}}^{\text{vac}}}{g \to c\bar{c}}$$

$c\bar{c}(Z)$ $d_{C\bar{C}}(Z)$

G.M. Innocenti, Medium enhanced $g \rightarrow c\bar{c}$ production, MPI@LHC (Madrid)

$P_{g \rightarrow c\bar{c}}^{med}$: broadening and enhancement

Numerical values for $P_{g \to c\bar{c}}^{med} / P_{g \to c\bar{c}}^{vac}$

 $P_{g \to c\bar{c}}^{med}$ in multiple soft scattering limit expressed in terms of: • $\hat{q}L \rightarrow$ dimension of a squared momentum [GeV²] • $e_g, z, \tilde{m_c}^2, \tilde{k_c}^2 \rightarrow \text{dimensionless}$

$$= \frac{2E_g}{\hat{q}L^2}, \quad \tilde{m}_c^2 = \frac{m_c^2}{\hat{q}L}, \quad \tilde{k}_c^2 = \frac{k_c^2}{\hat{q}L}, \quad \tilde{\Omega} = \Omega L, \quad \tilde{\mu} =$$

• To facilitate the physics interpretation of the result we present them at a given $\hat{q}L$, and for Eg=(20 L/4fm)

 $E_{g} = 20(10) \text{ GeV}$

As an example

- \hat{q} =1(2) GeV²
- L =4(2) GeV²
- ĝL=4(4) GeV²
- $\hat{q}L^2$ = 8 GeV²

Yoctosecond structure of the QGP with top quarks

$g \rightarrow bb$ splittings

$D^0\overline{D}^0$ correlations in ALICE 3

G.M. Innocenti, Medium enhanced $g \rightarrow c\bar{c}$ production, MPI@LHC (Madrid)

ALICE 3 Letter of Intent, LHCC-I-038

