Recent CMS Heavy lon results What's the status at MPI 2022

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-12 08:36:52.866176 GMT Run / Event / LS: 326586 / 2491137 / 6

G. K. Krintiras (cern.ch/gkrintir) on behalf of the CMS collaboration The University of Kansas

Nuclear gluon PDF: constraints scarce so far

- **State-of-the-art** nPDFs for perturbative QCD calculations
- Strong constraints on gluon modifications from dijets and W bosons
- NNLO nPDF analyses to include LHC data

Nuclear gluon PDF: constraints scarce so far

State-of-the-art nPDFs for perturbative QCD calculations

CT10

CT14

← pp

CT10+EPS09 NLO MCFM

(CT14+EPPS16)

← pPb

80

100

NNLO+NNLL Top++

NNLO+NNLL Top++

- Strong constraints on gluon modifications from dijets and W bosons
 - also possibly from top quark production
- NNLO nPDF analyses to include LHC data

 $R_{\rm pA}$

p-Pb

scaled⊗p

arXiv: 1709.07411

H

60

pp, 19.6 fb⁻¹, (\sqrt{s} =8 TeV)

I+jets EPJC 77 (2017) 15

eµ JHEP 1608 (2016) 029

l+jets

μ+jets

e+jets

0

20

Data scaled by A $\cdot \frac{\sigma_{\text{NNLO+NNLL}}(8.16 \text{ TeV})}{2}$

pPb, 174 nb⁻¹, (√s_{NN}=8.16 TeV)

σ_{NNLO+NNLL}(8 TeV)

40

In preparation of EIC, HIC @ LHC provides the **best input to nPDFs**

Probing the initial state with DY: another standard candle 7

- **Drell-Yan (DY)** inclusive & differential pPb measurement in **extended** 15< m_{µµ} <120 GeV
- the most precise to date \rightarrow provide **novel constraints** on the quark nPDFs
- High-precision in PbPb too
- Deviation from flat centrality dependence described by HG-PYTHIA
- Possibility to determine NN luminosity with # of Z boson counts

Z boson production could even provide a **new normalization method**!

Run: 286717 Event: 43643466 2015-11-26 09:53:40 CEST Pb+Pb, √s_{NN} = 5.02 TeV

Empty events *full* of physics

- Do we have systems smaller than in pp at LHC?
- γA, γp events good candidates to "bridge the gap" with e+e-
- **Not yet conclusive**: signs of QGP, CGC, $\gamma \rightarrow$ vector meson (VM) fluctuation?

Precision QED and BSM searches

- **2** Processes like $\gamma\gamma \rightarrow \mu\mu$ will be high **precision-like** at HL-LHC
- calibration of photon flux, constrain predictions for $\gamma\gamma \rightarrow ee$, $\tau\tau$
- **Z** Small cross sections, e.g., $\mathcal{O}(\alpha^4)$ for $\gamma\gamma \rightarrow \gamma\gamma$, but Z⁴ enhancement
- best limits on couplings of axion-like particles over m_a =0.1–100 GeV

arXiv: 2206.05192

Taking advantage of huge photon fluxes from large-A UPC

Investigating the initial stages with more elaborate observables

P(x)

CMS Preliminarv

Ō

0

-0.1

-0.2

non-Gaussia

PbPb 5.02 TeV (0.58 nb⁻¹)

0.5<p_<3.0 GeV/c

ml<2.4

non-equilibriun

Subtle differences in $v_2\{2k\}(k \le 5) \rightarrow$ fluctuation-driven **moments** of v_2

- measured v2{10} measured for the first time!
- constraints on hydro predictions
- **Z** High-precision for **sign changes** when correlating $v_n{2k}$ with $[p_T]$
- very sensitive to gluon correlations (CGC): not seen in data

Resolving v₂ event-by-event fluctuations with unprecedent precision

Charm quark dynamics via (multi)particle correlations 13

Z First Δv_2 measurement for $D^0 \rightarrow$ sensitive to the strong created EM fields

no EM induced charge-dependent splitting in v₂

Z First high-precision $v_2{4}/v_2{2}$ also for $D^0 \rightarrow$ check whether fluctuations on v_2 are universal

• that's the case modulo very central (peripheral) events

Resolving v₂ event-by-event fluctuations with identified particle v₂{4}

Extracting QGP thermodynamic properties

Soft particle production and kinematics give us information about **QGP and its evolution**

 \Box viscosities **n/s** and **\zeta/s** control dissipation of energy-momentum perturbations

Data from LHC (ALICE and CMS)

cf. Chun's talk

η/s near to AdS/CFT threshold: almost perfect fluid!

16

Comparing heavy flavor particle flow in all systems

17

space

- There is charm anisotropy... everywhere
- ordering: v_2 (PbPb) $\ge v_2$ (pPb) $> v_2$ (pp)
- so system size should play a role?
- **Z** For open bottom hadrons: v_2 (PbPb) > 0 but v_2 (pPb) ~ v_2 (pp) ~ 0
- can HF probes help to answer whether QGP is formed in high-multiplicity pPb/pp?

How energy loss is distributed?

Quenched iet

← Jet cone →

Soft fragments

Hard fragments

pp jet

Soft fragments

ard fragments

- Jet shape: radial profile of particles in jets
- energy outside jet cone is mostly low energy particles
- energy is transferred to soft particles at large angles
- Similar conclusions when checking the behavior of particles associated with Z bosons
- models with parton-medium interactions describe data

How energy loss is distributed?

19

Quenched jet pp jet **Z**Larger modification for b than inclusive jets at large Δr Soft fragments Soft fragments • Depletion at small Δr : suggestion of **dead-cone effect** for b jets Hard fragments Hard fragments $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, PbPb 1.69 nb⁻¹, pp 27.4 pb⁻¹, anti- k_T jet (R = 0.4): $p_T^{\text{jet}} > 120 \text{ GeV}$, $\eta_{\text{int}} < 1.6$ 2.5 b (PbPb)/b (pp) arXiv: 2210.08547 incl.(PbPb)/incl.(pp) $\rho(\Delta r)_{PbPb}/\rho(\Delta r)_{pp}$ $p_{\tau}^{trk} > 1 \text{ GeV}$ **₽**₽^{₽©} 30-90% 10-30% 0-10% 0.5 pjet b (PbPb)/incl.(PbPb) 2 b (pp)/incl.(pp) $\rho(\Delta r)_{\rm b}^{\rm /} \rho(\Delta r)_{\rm incl.}$ $p_{\tau}^{trk} > 1 \text{ GeV}$.5 0.5^L 0.2 0.8 0.4 0.6 0.2 0.4 0.8 0.2 0.8 0.6 0.4 0.6 Δr Δr Δr **Increased medium response** to the propagation of a heavier quark

Explore energy loss and QGP expansion at the same time 20

0.5

0.4

0.3

∽ 0.2

Scalar Produc

Cent. 10-60 %

Prompt J/u

|y| < 2.4

0 1.6 < |y| < 2.4

- Measure the rate of jets wrt. collision geometry
- dijet v_n show the path length dependence of energy loss
- Measurements of v₂ and R_{AA}
- mass splitting at low p_T but converge at high p_T ($\gg m_h$)
- $v_2 \psi(2S)$ "out of trend" despite larger suppression

CMS-PAS-HIN-21-008

Nonprompt J/ ψ

|y| < 2.4

Prompt $\psi(2S)$

b —> J/ψ

35

Prompt J/ψ

20

Prompt ψ(2S)

40

20 25 30

p_ (GeV/c)

15

p_{_} (GeV/c)

10

1.6 < |y| < 2.4

PbPb 1.6 nb⁻¹ (5.02 TeV)

CMS Preliminary

Prompt $\psi(2S)$

50

30

25

45

CMS

1.6 < |v|

Ivl < 2.4</p>

Wait, all these previous conclusions depend on R? 21

With larger jet R one expects

- wider area to recover lost energy
- phase space to open for jets with wider splittings
- Closer look to the R (in)dependent suppression
- Different jet collections and UE estimations

Discriminating power for models and the physics mechanisms at play

Heavy quarkonia suppression

- Similarly to the **hierarchy suppression** between J/ψ and $\psi(2S)$
- first time including Y(3S) in the picture

Interplay of **suppression-regeneration** crucial to grasp data

B_s and **B**_c in PbPb

23

For B_s low-pT enhancement suggested by models

●current uncertainty large though

First observation of B_c

• unique state for enhancement (low pT) and suppression (high pT)

Novel probe for suppression-regeneration

Femptoscopic measurements with charged and strange particles

Probing QGP chemical evolution, its size, and baryon (hyperon)-baryon (hyperon) interaction

Production of exotic hadrons in HIC

- **Z** Exotic states test models in an expanded range of n_{cq}
- effects are sensitive to size/binding energy of bound state and QGP density

VERY large radius, ~5-10 fm

 $D^{0}\overline{D}^{*}$ Molecule

Tightly bound via color exchange between diquarks *Small* radius, ~1 fm

Compact tetraquark

- $\Sigma \chi_{c1}(3872)/\psi(2S)$: something different for exotic vs conventional hadrons?
- initial-state effects cancel in the ratio
- enhancing effects start to **outcompete** breakup (at least at low p_T)

Machine learning techniques increases sensitivity to rare probes

From "smoking guns" to high precision, exotic and new signals

With input from <u>Workshop on the physics of HL-LHC (2017)</u> <u>CMS HI Physics at LHC Runs 3+4 and Beyond</u>

Nonexhaustive list

Throwing a bullet through an apple... Why?

Beyond improvements from detector upgrades and increased luminosity, the YR and Snowmass efforts document the HL-LHC (&beyond) scientific program for understanding **high-density QCD**

With input from Workshop on the physics of HL-LHC (2017)

HL-LHC operational scenarios for pPb and PbPb

- Included in the YR and more recently refined (CERN-ACC-2020-0011, EPJ.Plus 136 (2021) 7)
- scenarios are based on **benchmarked** models (agree remarkably well with Run 2 LHC data)
- ≈five one-month runs would be needed to reach 13 /nb of PbPb
- **≈two** one-month runs would be needed to reach **1.2 /pb** of pPb
- projections could be improved, e.g., due to operational efficiency (>50%), etc

HL-LHC starts at Run 3 for heavy ions

Nuclear PDFs: constraints scarce so far

- State-of-the-art nPDFs for perturbative QCD calculations
- Strong constraints on gluon modifications from dijets and W bosons
- NNLO nPDF analysis to include LHC data
- **Z** Complementarity at very **low-***x* with π^0 , η , and D^0 mesons
- Bonus: saturation models and energy loss constraints

$$R_{\rm pA} = \frac{\text{p-Pb}}{\text{scaled} \otimes \text{pp}}$$

Key characteristics of the nPDF global fits

	KSASG20	nCTEQ15WZSIH	TUJU21	EPPS21	nNNPDF3.0
Order in α_s	NLO & NNLO	NLO	NLO & NNLO	NLO	NLO
la nc dis	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ν A CC DIS	\checkmark		\checkmark	\checkmark	\checkmark
pA DY	\checkmark	\checkmark		\checkmark	\checkmark
πA DY				\checkmark	
RHIC dAu π^0, π^\pm		\checkmark		\checkmark	
LHC pPb $\pi^0, \pi^{\pm}, K^{\pm}$		\checkmark			
LHC pPb dijets				\checkmark	\checkmark
LHC pPb D ⁰				\checkmark	√ reweight
LHC pPb W,Z		\checkmark	\checkmark	\checkmark	\checkmark
LHC pPb γ					\checkmark
Q, W cut in DIS	1.3, 0.0 GeV	2.0, 3.5 GeV	1.87, 3.5 GeV	1.3, 1.8 GeV	1.87, 3.5 GeV
p_{T} cut in D ⁰ , h -prod.	N/A	3.0 GeV	N/A	3.0 GeV	0.0 GeV
Data points	4353	948	2410	2077	2188
Free parameters	9	19	16	24	256
Error analysis	Hessian	Hessian	Hessian	Hessian	Monte Carlo
Free-proton PDFs	CT18	\sim CTEQ6M	own fit	CT18A	\sim NNPDF4.0
Free-proton corr.	no	no	no	yes	yes
HQ treatment	FONLL	S-ACOT	FONLL	S-ACOT	FONLL
Indep. flavours	3	5	4	6	6
Reference	PRD 104, 034010	PRD 104, 094005	arXiv:2112.11904	arXiv:2112.12462	arXiv:2201.12363

Key characteristics of the nPDF global fits

With input from Annu. Rev. Nucl. Part. Sci. 70 (2020)

Nuclear (most recent) PDFs	nCTEQ15	EPPS16	nNNPDF 2 .0 (1 .0)	TUJU19
Perturbative order	NLO	NLO	NLO, NNLO	NLO, NNLO
Heavy quark scheme	ACOT	S-ACOT	FONLL	ZM-VFN
Value of $\alpha_s(m_Z)$	0.118	0.118	0.118	0.118
Input scale Q_0	$1.30~{\rm GeV}$	$1.30 { m ~GeV}$	$1.00 { m GeV}$	$1.69~{\rm GeV}$
Data points	708	1811	1467 (451)	2336
Fixed Target DIS	\checkmark	\checkmark	\checkmark (w/o ν -DIS)	\checkmark
Fixed Target DY	\checkmark	\checkmark		
LHC DY and W		\checkmark	\checkmark (X)	
Jet and had. prod.	$(\pi^0 \text{ only})$	$(\pi^0, LHC dijet)$		
Independent PDFs	6	6	3	6
Parametrisation	simple pol.	simple pol.	neural network	simple pol.
Free parameters	16	20	256 (178)	16
Statistical treatment	Hessian	Hessian	Monte Carlo	Hessian
Tolerance	$\Delta\chi^2 = 35$	$\Delta \chi^2 = 52$	—	$\Delta\chi^2 = 50$

nPDFs from several groups but

- less available data sets compared to the free-nucleon cases
- different data sets (e.g., pPb LHC data), theoretical assumptions, and methodological settings
- not well understood aspects for bound nucleons, e.g.,
 - the nuclear modifications of the gluon distribution
 - Measurements at small-x test non-linear QCD evolution at small-x ("parton saturation")

In preparation of EIC, pPb @ HL-LHC provides the best input to nPDFs

Nuclear gluon PDFs: constraints scarce so far

- Stringent constraints with **dijet** production
- Enhanced suppression at forward y
- Significant reduction in EPPS16 uncertainties after reweighting already with Run 2 data (left plot)
- Improved constraints with HL-LHC data (right plot)
- Complementarity with W bosons and top quarks, and exclusive vector meson photoproduction

	Collisional en. loss	Radiative en. loss	Coalescence	Hydro	nPDF
TAMU	\checkmark	X	\checkmark	\checkmark	\checkmark
LIDO	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PHSD	\checkmark	X	\checkmark	\checkmark	\checkmark
DAB-MOD	\checkmark	\checkmark	\checkmark	\checkmark	×
Catania	\checkmark	X	\checkmark	\checkmark	\checkmark
MC@sHQ+EPOS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LBT	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
POWLANG+HTL	\checkmark	×	\checkmark	\checkmark	\checkmark
LGR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

But more importantly: different implementations and input parameters.

arXiv: 2109.01908

Table 2: Summary of systematic uncertainties in the T_{AA} -scaled yield measurements for B⁺ and B⁰_s mesons, in three centrality ranges. The measurements are performed in the B meson kinematic region given by $10 < p_T < 50 \text{ GeV}/c$ and |y| < 2.4. The relative uncertainty values are shown in percentage.

		B^+			B_s^0	
Centrality class	0–30%	30-90%	0–90%	0–30%	30–90%	0–90%
Muon efficiency	+4.2	+4.1	+4.2	+5.5	+4.6	+5.3
When enterery	-3.8	-3.8	-3.8	-4.9	-4.2	-4.7
Data/MC agreement	13	8.0	12	3.1	3.7	3.2
MC sample size	3.2	2.2	2.4	6.6	2.3	4.4
Fit modeling	2.5	2.8	2.6	2.5	3.2	2.3
Tracking efficiency	5.0	5.0	5.0	10	10	10
T_{AA}	2.0	3.6	2.2	2.0	3.6	2.2
N_{MB}		1.3			1.3	
Branching fraction		2.9			7.5	
Total	+16	+12	+15	+16	+15	+15
10141	-15	-12	-15	-16	-15	-15

Measuring jet quenching

- Energy of partons is redistributed ('quenched') inside QGP
- Experimentally seen as R_{AA} modifications of hadrons or jets
- dependent on centrality, p_T parton mass
- ☑ Unprecedented access from **low- to high-p**_T

Pb-Pb $R_{\rm AA}$ scaled⊗p

Ratios of jet p_{T} spectra with different R

Jet shapes and fragmentation with y+jet events

- **I** Initial parton energy better constrained by γp_T (quark-enriched jets)
- Jet shape
- Jets are wider in PbPb than pp
- Jet fragmentation function
- Measuring with precision medium-induced modifications

Evidence of tt cross section in PbPb

, q **First** experimental evidence (4σ level) of the top quark in **nucleus**-nucleus collisions W^+ using leptons only and leptons+b jets It establishes a new tool for probing nPDFs as well as the QGP properties b Phys. Rev. Lett. 125 (2020) 222001 $1.7 \text{ nb}^{-1} (\sqrt{s_{NN}} = 5.02 \text{ TeV})$ CMS 50 Events Data еμ l tt CMS ItW Nonprompt PbPb, 1.7 nb⁻¹, $(\sqrt{s_{NN}} = 5.02 \text{ TeV})$ 40 Ζ/γ* $2I_{OS}+N_{b-tag}$ Total unc <u>EPPS16 NLO</u> CT14 NNLO x NNLO+NNLL TOP++ 0 b 1b2 b $2I_{OS}$ 30 20 pp, 27.4 pb⁻¹, ($\sqrt{s} = 5.02 \text{ TeV}$) CT14 NNLO NNLO+NNLL TOP++ (scaled by A^2) 10 NNPDF30 NNLO 2I_{OS}+jets/I+N JHEP 03 (2018) 115 NNLO+NNLL TOP++ Exp unc: stat, stat⊕syst 0 HE+3-1 2 1.5 Th unc: PDF, PDF⊕scale Data/Pred 0 2 8 6 0.5 σ [μb] TT/3,2/3 TO, 1/31 [0, _{1/3[} [1/3, 2/3[[2/3, 1]

BDT

A nice heuristic idea for a yocto-chronometer !

Knowing the energy loss, it is possible to build the density evolution profile of the medium!

BSM searches with heavy ion collisions at the LHC

Submitted as input to the update of the European Particle Physics Strategy (EPPS)

arXiv: 1812.07688

Production mode	BSM particle/interaction	Remarks
Ultraperipheral	Axion-like particles Radion Born-Infeld QED Non-commutative interactions	$\begin{array}{l} \gamma\gamma ightarrow a, \ m_a pprox 0.5 - 100 {\rm GeV} \ \gamma\gamma ightarrow \phi, \ m_\phi pprox 0.5 - 100 {\rm GeV} \ { m via} \ \gamma\gamma ightarrow \gamma\gamma$ anomalies via $\gamma\gamma ightarrow \gamma\gamma$ anomalies
Schwinger process	Magnetic monopole	Only viable in HI collisions
Hard scattering	Dark photon Long-lived particles (heavy ν)	$m_{A'} \lesssim 1 \text{GeV}$, advanced particle ID $m_{\text{LLP}} \lesssim 10 \text{GeV}$, improved vertexing
Thermal QCD	Sexaquarks	DM candidate

Table 1: Examples of new-physics particles and interactions accessible in searches with HI collisions at the LHC, listed by production mechanism. Indicative competitive mass ranges and/or the associated measurement advantages compared to the pp running mode are given.