

MULTI-MESSENGER HEAVY-ION PHYSICS WITH JETSCAPE

CHUN SHEN

13th International workshop on Multiple Partonic Interactions at LHC

November 15, 2022

NUCLEAR MATTER UNDER EXTREME CONDITIONS

final detected particle distributions

NUCLEAR MATTER UNDER EXTREME CONDITIONS

Chun Shen (WSU/RBRC)

Heavy-ion collisions are tiny and have ultra-fast dynamics

free streaming

 $1 \text{ yoctosecond} = 10^{-24} \text{ s}$

t~10⁻⁸s

 $\sim\sim\sim\sim$

NUCLEAR MATTER UNDER EXTREME CONDITIONS

Chun Shen (WSU/RBRC)

13th Workshop on MPI at the LHC

Heavy-ion collisions are tiny and have ultra-fast dynamics

A variety of particles are emitted from the collisions

Multi-messenger nature of heavy-ion physics

MULTI-MESSENGER HEAVY-ION PHYSICS QCD jets

Hadrons

CMS Experiment at LHC, CERN Data recorded: Sun Nov 14 04:29:43 2010 CEST Run/Event: 151058 / 4096951 Lumi section: 747

EW bosons

ECal 357, pt: 22.6 GeV

ECal 358, pt: 18.9 GeV

ECal 2339, pt: 37.9 GeV

Chun Shen (WSU/RBRC)

13th Workshop on MPI at the LHC

EM radiations

Picture from the

ATLAS Collaboration

MULTI-MESSENGER HEAVY-ION PHYSICS QCD jets

Hadrons

Pb-Pb $\sqrt{s_{\rm NN}} = 2.76$ TeV n (3717) 2010-11-00 00:12 13

ALICE

CMS Experiment at LHC, CERN Data recorded: Sun Nov 14 04:29:43 2010 CEST Run/Event: 151058 / 4096951 Lumi section: 747

EW bosons

ECal 2339, pt: 37.9 GeV

Chun Shen (WSU/RBRC)

13th Workshop on MPI at the LHC

Set Sefere

Picture from the

ATLAS Collaboration

Equation of State $T^{\mu\nu} \iff e, P, s$ $c_s^2 = \partial P / \partial e|_{s/n}$

Shear and bulk viscosities $\eta/s(T,\mu_B),\,\zeta/s(T,\mu_B)$ Charge diffusion D_B, D_Q, D_S Electromagnetic emissivity Energy-momentum transport $\hat{q}, \hat{e}, \hat{e}_2, \dots$

Chun Shen (WSU/RBRC)

QGP phase

Hadron gas

phase

DEFINING THE QUARK-GLUON PLASMA Which properties of hot QCD matter can we determine from relativistic heavy ion data (LHC, RHIC, and future FAIR/NICA/JPAC)?

> Spectra, collective flow, femtoscopy

Anisotropic flow v_n Flow correlations

Balance functions

Photons and dileptons

Jets and heavy-quarks

Equation of State $T^{\mu\nu} \iff e, P, s$ $c_s^2 = \partial P / \partial e |_{s/n}$

Shear and bulk viscosities $\eta/s(T,\mu_B),\,\zeta/s(T,\mu_B)$ Charge diffusion D_B , D_Q , D_S Electromagnetic emissivity Energy-momentum transport $\hat{q}, \hat{e}, \hat{e}_2, \dots$

Chun Shen (WSU/RBRC)

QGP phase

Hadron gas

phase

DEFINING THE QUARK-GLUON PLASMA Which properties of hot QCD matter can we determine from relativistic heavy ion data (LHC, RHIC, and future FAIR/NICA/JPAC)?

> Spectra, collective flow, femtoscopy

Anisotropic flow Vn Flow correlations

Balance functions

Photons and dileptons

Jets and heavy-quarks

Equation of State $T^{\mu\nu} \iff e, P, s$ Spectra, collective flow, $|c_s^2 = \partial P / \partial e|_{s/n}$ femtoscopy Shear and bulk viscosities Anisotropic flow Vn $\eta/s(T,\mu_B),\,\zeta/s(T,\mu_B)$ Flow correlations Charge diffusion D_B , D_Q , D_S Balance functions Electromagnetic emissivity Photons and dileptons

Deducing the QGP properties from experimental data requires exascale computing with advanced statistical methods

Chun Shen (WSU/RBRC)

QGP phase

Hadron gas

phase

13th Workshop on MPI at the LHC

DEFINING THE QUARK-GLUON PLASMA Which properties of hot QCD matter can we determine from relativistic heavy ion data (LHC, RHIC, and future FAIR/NICA/JPAC)?

THE MULTI-STAGE THEORETICAL FRAMEWORK

Initial State + Pre-equilibrium dynamics

$$T^{\mu\nu}_{\text{pre. eq}} = T^{\mu\nu}_{\text{hydro}}$$

+ Landau Matching
with lattice EoS

ullet Continuously connect the system's energy-momentum tensor $T^{\mu
u}$ between different stages

Chun Shen (WSU/RBRC)

13th Workshop on MPI at the LHC

Hydrodynamics

Hadronic Transport

Cooper-Frye particlization

Chun Shen (WSU/RBRC)

GLOBAL BAYESIAN CONSTRAINTS ON QGP VISCOSITY

Chun Shen (WSU/RBRC)

BAYESIAN CONSTRAINTS ON JET TRANSPORT

• First result: focus in on inclusive charged hadron Partons evolve with the MATTER + LBT model through 2+1D hydrodynamic medium

$$\frac{\widehat{q}(E,T)|_{A,B,C,D,Q_{sw}}}{T^3} = 42C_R \frac{\zeta(3)}{\pi} \left(\frac{4\pi}{9}\right)^2 \begin{cases} \frac{A}{2} \\ \frac{A}{2} \\ \frac{A}{2} \end{cases}$$

Chun Shen (WSU/RBRC)

JETSCAPE, Phys.Rev.C 104 (2021) 2, 024905

WHERE WE ARE AND WHERE WE ARE GOING

- Quark-Gluon Plasma is the hottest, smallest, and the most perfect fluid ever created in the laboratory
- A fluid has "close" to the fundamental degrees of freedom
- How does the strongly coupled liquid emerge from fundamental QCD interactions?
 - Probes the inner working of QGP at multi-resolution scales with jets and heavy-quarks
 - What is the smallest possible droplet of QGP?
 - What is the structure of QCD phase diagram?

QCD JETS AS A MICROSCOPE FOR THE QCD MATTER

Chun Shen (WSU/RBRC)

13th Workshop on MPI at the LHC

Store Full Event Record onto Disk

Majumder(13) Kordell, Majumder(17) Cao, Majumder(17)

Radiation dominated Virtuality ordered splitting

> **Higher-Twist** formalism

13th Workshop on MPI at the LHC

MULTI-STAGE JET EVOLUTION

@ Y. Tachibana

MULTI-STAGE JET EVOLUTION

Coherence effects Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk, PLB707, 156-159 (2012) J. Casalderrey-Solana, E. lancu, JHEP08, 015 (2011)

- Scale evolution of QGP constituent distribution Kumar, Majumder, Shen, PRC101, 034908 (2020)
- Less interaction for large- Q^2 partons

 \rightarrow Implemented in MATTER

Effective jet-quenching strength

$$\hat{q}_{\mathrm{HTL}} \cdot f(Q^2)$$

JETSCAPE, arXiv:2204.01163

$$f(Q^2) = \frac{1 + c_1 \ln^2(Q_{\rm sw}^2) + c_2 \ln^4(Q_{\rm sw}^2)}{1 + c_1 \ln^2(Q^2) + c_2 \ln^4(Q^2)}$$

$$\hat{q}_{\rm HTL} = C_a \frac{42\zeta(3)}{\pi} \alpha_{\rm s}^{\rm run} \alpha_{\rm s}^{\rm fix} T^3 \ln \left[\frac{2ET}{6\pi T^2 \alpha_{\rm s}^{\rm fix}} \right]$$

Chun Shen (WSU/RBRC)

JET AND SINGLE PARTICLE ENERGY LOSS Pb+Pb collisions at 5.02 TeV JETSCAPE, arXiv:2204.01163

 Simultaneous description for jet and charged hadron energy loss • Significant coherence effects on high p_T charged hadron R_{AA}

Chun Shen (WSU/RBRC)

13th Workshop on MPI at the LHC

JET AND SINGLE PARTICLE ENERGY LOSS

Pb+Pb collisions at 2.76 TeV (same parameter set as 5.02 TeV)

of parton energy loss in central Pb+Pb collisions at 2.76 TeV Chun Shen (WSU/RBRC)

JETSCAPE, arXiv:2204.01163

The MATTER + LBT with coherence effects can provide a good description

13th Workshop on MPI at the LHC

JET AND SINGLE PARTICLE ENERGY LOSS

Au+Au collisions at 200 GeV (same parameter set as 5.02 TeV)

• The MATTER + LBT with coherence effects can describe the collision energy dependence of parton energy loss from 200 GeV to 5.02 TeV Chun Shen (WSU/RBRC) 13th Workshop on MPI at the LHC

JETSCAPE, arXiv:2204.01163

HEAVY QUARK ENERGY LOSS

Pb+Pb collisions at 5.02 TeV (same parameter set as light hadrons)

the D meson energy loss in Pb+Pb collisions at 5.02 TeV

Chun Shen (WSU/RBRC)

13th Workshop on MPI at the LHC

JETSCAPE, arXiv:2208.00983

The same MATTER + LBT with coherence effects can consistently describe

JET SUBSTRUCTURES

Jet Fragmentation function $D(p_T) = -$

virtuality phase — probing the coherence effects

Chun Shen (WSU/RBRC)

13th Workshop on MPI at the LHC

• The jet fragmentation function is sensitive to medium effects in the high

data Chun Shen (WSU/RBRC)

Consistent with almost no medium modifications in the hardest splittings as in

13th Workshop on MPI at the LHC

SYSTEMATIC CONSTRAINTS ON JET TRANSPORT

- Going beyond the first JETSCAPE Bayesian analysis of the jet transport:
 - more observables (jet R_{AA}) are included in the calibration
 - coherence effects in MATTER are parameterized
- Effective jet quenching strength: $\hat{q}_{\mathrm{HTL}} \cdot f(Q^2)$

motivated by Kumar, Majumder, Shen, PRC101, 034908 (2020)

$$f(Q^2) = \frac{N \exp(c_3(1 - x_B))}{1 + c_1 \ln(Q^2 / \Lambda_{\text{QCD}}^2) + c_2 \ln^2(Q^2 / \Lambda_{\text{QCD}}^2)}$$
$$f(Q^2) = 1 \text{ when } Q \le \Lambda_{\text{OCD}}$$

13th Workshop on MPI at the LHC

THE ERA OF MULTI-MESSENGER HEAVY-ION PHYSICS

- RHIC: STAR upgrade and sPHENIX program Probing QCD at high net baryon density Study fully resolved jets, Upsilon states, and heavy quarks as QGP structure probes
- LHC: ALICE, CMS, ATLAS upgrades
 - High energy and high luminosity frontier Precision measurements for rare probes
- HADES, FAIR, J-PAC-HI
 - Phase structure of hot QCD matter
- Future Electron-Ion Collider
 Tomography of nucleon and nucleus smallest QGP droplet?
 13th Workshop on MPI at the LHC

Chun Shen (WSU/RBRC)

THE XSCAPE PROJECT (2020 - 2024)

Chun Shen (WSU/RBRC)

SUMMARY

- Multi-messenger heavy-ion physics has entered a precision era Bayesian Inference is essential to fully exploit the multi-messenger data
- The JETSCAPE framework is a unified theoretical tool to study both the soft and hard observables in a same setting
 - Unravel how strongly-coupled nature of QGP is emerged at different length scales
 - Interplay between collective dynamics and high energy parton shower
- Current JETSCAPE extensions to small systems and baryon-rich QGP with the upcoming experiments would bring a golden age to quantitatively study hot and dense QCD matter

THE JETSCAPE COLLABORATION

Chun Shen (WSU/RBRC)

Chun Shen (WSU/RBRC)

QCD EQUATION OF STATE

QCD equation of state are constrained by Lattice QCD calculations

Chun Shen (WSU/RBRC)

13th Workshop on MPI at the LHC

A. Monnai, B. Schenke and C. Shen, Int. J. Mod. Phys. A36, 2130007 (2021)

